Mitigate long term risk factors – high joint & muscle loads

Augment laboratory and field studies with biomechanical analyses and evaluate the biomechanical risk factors associated with using wearable devices. Compute individual muscle forces and metabolism along with joint contact-forces and moments and digitally test and optimize your mechanically exoskeleton concepts to mitigate long term risk factors such as joint reaction forces.

Examples:

  • Augment laboratory and field studies with biomechanical analyses.
  • Use simulation studies as in-silico evidence of the efficacy and safety of your device.
  • Supplement functional and safety portfolio of your device with simulations studies.
  • Test your assistive device’s fit and support through population-based simulations.
  • Assessing the efficiency of exoskeletons
  • Investigate how different mechanical design parameters can affect the user
  • Evaluate changes in the internal body loads (e.g., muscle activities, joint reaction forces, compression forces etc.)

“The AnyBody Modeling System can simulate trunk muscles that cannot otherwise be measured by normal myoelectricity. In addition, it can calculate joint forces that cannot be captured easily, which makes the software essential for correct estimation of the effect of our exoskeleton. The results and visualizations are additionally used in our promotional videos and has received great feedback from our customers.”

Daigo Orihara, CEO Innophys Co., Ltd.

Selected papers

  • Fritzsche L, Galibarov P, Gärtner C, Bornmann J, Damsgaard M, Wall R, Schirrmeister B, Gonzalez-Vargas J, Pucci D, Maurice P (2021), “Assessing the efficiency of exoskeletons in physical strain reduction by biomechanical simulation with AnyBody Modelling System“, HAL.
  • Zhang L, Liu Y, Wang R, Smith C, Gutierrez-Farewik EM (2021), “Modeling and Simulation of a Human Knee Exoskeleton’s Assistive Strategies and Interaction“, Front. Neurorobot., vol. 15, pp. 13. [DOIWWW]
  • Chander DS, Cavatorta MP (2020), “Modelling Interaction Forces at a Curved Physical Human-Exoskeleton Interface“, In: Hanson L, Högberg D, Brolin E (Ed): Advances in Transdisciplinary Engineering series 11, pp. 217-225. [DOI]
  • Smith AJJ, Fournier BN, Nantel J, Lemaire ED (2020), “Estimating upper extremity joint loads of persons with spinal cord injury walking with a lower extremity powered exoskeleton and forearm crutches“, J. Biomech., vol. 107, pp. 109835. [DOI]
  • Tröster M, Schneider U, Bauernhansl T, Rasmussen J, Andersen MS (2018), “Simulation Framework for Active Upper Limb Exoskeleton Design Optimization Based on Musculoskeletal Modeling“, In: Smart ASSIST, pp. 345-353.
Top