HUMAN POSTURE AND MOVEMENT PREDICTION BASED ON MUSCULOSKELETAL MODELING

Saeed Davoudabadi Farahani

Department of Mechanical and Manufacturing Engineering

AnyBody inside project

ΑΝΫΒ

ALBORG UNIVERSITY DENMARK

Contents

Introduction

- \circ Motivation
- o Human models
- o Simulation models
- \circ State-of-the-art

Posture and movement Prediction using inverse-inverse dynamics

- o Parameterization
- o Objective function
- \circ Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Digital manikin application and limitations...

The digital manikin must

be driven by experimental

kinematic and kinetic data!

anc

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Digital manikins applications:

- ✓ Orthoped✓ Rehabilitation
- ✓ Clinical bi
- Clinical
 Fragonor
- ✓ Ergonon
- ✓ Occupationa
- ✓ Industri
- ✓ Sports equipment

Experiment limitations:

- o Time-consuming
- Technically difficult
- Potentially unsafe
- o Expensive

mization

Human models

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Digital human skeletal model (Xiang et al., 2010)

Series of rigid segments connected by one or more revolute joints.

AnyBody Musculoskeletal Model

Written in a general scripting language

Simulation models

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Why do we need simulation models?

Direct measurement of muscle force as a fundamental requirement for movement study is restricted to invasive measurement!

Types of simulation model:

- □ Forward dynamics
- □ Inverse dynamics

Redundancy problem

There are more muscles than necessary to generate the motions.

Optimization

Minimization of an appropriate cost function is necessary to cope with the redundancy of muscular load-sharing.

Forward and inverse dynamics

Introduction

• Forward dynamics

State-of-the-art

Introduction

Motivation

- Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

- Can we resolve the indeterminacy by formulating the human I. movement as an optimization problem?
- II. What is the objective function?

Research questions

III. Does any single formulation predict a wide range of human posture/movements?

The novelty of inverse-inverse dynamics is to generalize the idea of using an inverse dynamics-based formulation for human posture and movement prediction by using a detailed musculoskeletal model.

State-of-the-art

Introduction

o Motivation

- Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example Io Example II
- o Example III

Concluding remarks

Future works

Inverse-inverse dynamics

Movement parameterization

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

The joint angles are parameterized by means of time functions controlling the motion. Time function could be <u>B-spline</u>, <u>Polynomial</u>, <u>Fourier series</u> and etc.

□ Identification of the level of parameterization complexity remains a challenging task.

□ The machine parameters can be considered as design variables.

Objective function definition

Introduction

- Motivation
- Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- Parameterization
- Objective function
- Optimization
- o Validation

The optimality hypothesis in human movement prediction is that movements are planned to optimize a performance criterion.

Optimization

Validation

Introduction

- o Motivation
- o Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Error quantification

A quantitative validation metric originally proposed by Geers (1984) was used to quantify the differences between the predicted and measured results.

 $M = \sqrt{\frac{\nu_{cc}}{\nu_{mm}}} - 1 \qquad \qquad \nu_{mm} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} m(t)^2 dt$ $P = \frac{1}{\pi} \arccos\left(\frac{\nu_{mc}}{\sqrt{\nu_{mm}\nu_{cc}}}\right) \qquad \qquad \nu_{cc} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} c(t)^2 dt$ $\nu_{mc} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} m(t)c(t) dt$

If the experimental data and computational results are identical, *M*, *P* and *C* will be zero!

Example I

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- \circ Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

SVJ

Human modeling and parameterization

Introduction

- Motivation
- o Human models
- Simulation models
- State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

We used <u>12</u> control points for each joint angle to discretize the motion over the entire jumping time by means of a fourth order **B-spline** curve.

Optimization problem definition

Introduction

- o Motivation
- o Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- Parameterization
- Objective function
- $\circ \ Optimization$
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

□ Objective function for the movement prediction:

 $F = Y_{\text{COM} @ \text{ take-off}} + (V_{\text{COM} @ \text{ take-off}})^2 / 2g$

• Optimization:

Find:

To:

S.t:

 $q_i, \quad i \in \{1, ..., n^{(C)}\}$

minimize
$$-(Y_{\text{COM}@take-off} + (V_{\text{COM}@take-off})^2 / 2g)$$

$$\begin{aligned} \theta_i^L &\leq \theta_i \leq \theta_i^U, \quad i \in \{1, \dots, n^{(D)}\} \\ 0 &\leq f_i^{(M)} \leq N_i, \quad i \in \{1, \dots, n^{(M)}\} \end{aligned}$$

Experimental study

Introduction

Experimental study

Subjects: A group of six healthy males volunteered for the test.

Instrumentation:

- **39** reflective skin markers
 - Two adjacent force platforms (sampling at 1000 Hz).
- o Eight infrared cameras (sampling at 250 Hz)

Test protocol:

- Squat vertical jumping (6 trials)
- Squat vertical jumping with arm swing (6 trials) 0
- The data set comprised 6 (subjects) \times 5 (trials) \times 2 (test conditions)

- Motivation
- Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- Optimization
- o Validation

Results

o Example I

- o Example II
- o Example III

Concluding remarks

Future works

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

The predicted jumping time in SVJ and SVJA is **0.570** (s) and **0.573** (s) respectively

Predicted and experimental values of the joint angles in SVJA and SVJA.

0.4

0.4

0.4

0.4

Introduction

- Motivation
- o Human models
- Simulation models
- State-of-the-art

Posture/movement Prediction

- Parameterization
- o Objective function
- Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

SVJ

Introduction

 Motivation Human models 			NRMSE	r ²	M	Р	С
o Simulation models		Ankle angle (deg)	0.067	0.997	-0.038	0.012	0.040
- Chata of the out	SVJ	Knee angle (deg)	0.080	0.990	-0.033	0.011	0.035
o State-or-the-art	5.00	Hip angle (deg)	0.102	0.995	-0.058	0.006	0.058
							0.273
Posture/movement						a a ti a m	0.025
Prediction		inverse-inverse dynamics car	i reproduce tr	ie coor	dinated	motion.	0.018
							0.020
• Parameterization	SVJA	Pelvis-thorax angle (deg)	0.200	0.991	-0.263	0.011	0.263
• Objective function		Shoulder flexion angle (deg)	0.053	0.991	-0.150	0.031	0.153
 Optimization 		Shoulder abduction angle (deg)	0.107	0.980	-0.190	0.031	0.192
o Validation		Shoulder rotation angle (deg)	0.162	0.956	-0.306	0.064	0.312
		Elbow flexion angle (deg)	0.112	0.965	-0.040	0.025	0.047

Results

- o Example I
- o Example II

o Example III

Concluding remarks

Future works

Predicted and experimental mean of the $Y_{\text{COM}@\text{take-off}}$, $V_{\text{COM}@\text{take-off}}$ and jump height in SVJA and SVJ.

		Averaged experimental results			Predicted results			
	S	VJ	SVJA	Enhancement (%)	SVJ	SVJA	Enhancement (%)	
$V_{\text{COM}@take-of}$ This approach is also capable of predicting the jump height ⁸ enhancement in squat vertical jumping with arm swing.								
jump heigł				· · · · · · · · · · · · · · · · · · ·	0		5	

Example II

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- \circ Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Musculoskeletal model of a bicycle rider with 176.6 cm height and 69.8 kg weight

Human modeling and parameterization

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

$$\varphi_{\text{Pedal}} = \sum_{i=1}^{3} [A_i \cos(\omega_i t) + B_i \sin(\omega_i t)]$$

$$\omega_i = (i - 1)2\pi f$$

$$\mathbf{A} = [A_1, A_2, A_3]; \quad \mathbf{B} = [B_1, B_2, B_3]$$

Optimization:

S.t:

Find:
$$\{A_1, A_2, A_3, B_1, B_2, B_3, M_{DP_{top}}, \alpha_M\}$$

To: minimize F

$$\beta_{\text{lower}} \leq \beta \leq \beta_{\text{upper}} 0 \leq f_i^{(M)} \leq N_i, \quad i \in \{1, \dots, n^{(M)}\}$$

Department of Mechanical and Manufacturing Engineering

Experimental study

Introduction

- o Motivation
- Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Subjects: A group of nine male cyclists volunteered for the test (with their own bike)

Instrumentation:

Experimental study

The output power and pedaling cadence were sampled at 10 Hz using SRM.

Test protocol:

- Three tests on level terrain and three tests on uphill terrain (4.8% grade).
- One test with preferred gear ratio, the two other tests with one gear ratio above and one gear ratio below the preferred gear ratio.
- All test were performed during **1 min** at a power output representing 90% peak power output.

Mean pedaling cadence and power output of the cyclists during experimental conditions

Cycling condition	Pedaling cadence \pm SD (rpm)	Power output \pm SD (W)
level terrain at low cadence (LL)	87.8±8.8	240±16.8
level terrain at preferred cadence (LP)	94.7±8.2	239.5±18.8
level terrain at high cadence (LH)	101.9±8.3	238.9±17.9
Uphill terrain at low cadence (UL)	74.9±9.5	245.2±12.2
Uphill terrain at preferred cadence (UP)	82.2±12.0	246.5±14.7
Uphill terrain at high cadence (UH)	87.7±13.0	242.8±14.6

Introduction

- o Motivation
- o Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- o Optimization
- o Validation

Results

- Example I
- Example II
- o Example III

Concluding remarks

Future works

Predicted and experimental data for pedaling on level terrain at preferred cadence

Example III

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- o Optimization
- o Validation

Results

o Example I

- o Example II
- o Example III

Concluding remarks

Future works

Experimental setup of crank-rotation task [Ken Ohta et al., 2004]

$$I\ddot{\theta}_{\rm Crank} + B\dot{\theta}_{\rm Crank} = r \boldsymbol{e}^T \boldsymbol{F}$$

 $I = 0.02 \text{ Kg. m}^2$ B = 0.37 Nms/radF: Hand contact force

- Four subjects
- o Different starting points

• The angular velocity is zero at the beginning and ending of the task.

• 100 clockwise circular reaching movement at subjects' own pace.

Human modeling, movement parameterization

Introduction

- o Motivation
- o Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- o Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Concluding remarks

Introduction

- o Motivation
- o Human models
- o Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

Can we formulate the human movement prediction as an optimization problem?

The results of the jumping study indicated that human movement prediction can treated as an optimization problem.

What is the appropriate objective function for human movement prediction?

The results of the pedaling study indicated that for a movement under investigation a range of performance criteria should be evaluated in order to find an appropriate objective function.

Does any single formulation predict a wide range of human posture/motion?

The results of the crank-rotation task indicated that an objective function defined appropriately based on muscle force/activity can predict natural human posture and movement.

Future works

Introduction

- o Motivation
- o Human models
- Simulation models
- o State-of-the-art

Posture/movement Prediction

- o Parameterization
- Objective function
- o Optimization
- o Validation

Results

- o Example I
- o Example II
- o Example III

Concluding remarks

Future works

□ Defining a proper optimality criterion to solve the muscular load sharing problem remains a major challenge. One of the unanswered research questions is how the CNS chooses one of the possible muscle activation sets.

□ Although a performance criterion defined based upon the muscle activity seems to be a good choice, more investigation is needed to uncover how the CNS governs human posture and motions.

□ In order to investigate the capability of the inverse-inverse dynamics technique to predict more complicated movements, cases like normal and perturbed gait would be most relevant.