Influence of clavicle midshaft fracture pattern on the superior plate stabilization

PD Dr.med. Carsten Englert* Dr.-Ing. Sebastian Dendorfer**

*Department of Orthopaedic and Trauma Surgery, University Regensburg, Medical Center, Germany

**AnyBody Technology, Aalborg, Denmark

The web cast will start in a few minutes....

Why not spend the time checking these points:

<u>Does your screen fit the presentation</u>? Try this:

The "Sharing" menu (upper right corner)->View->Autofit

<u>Is your system set up to receive the</u> <u>broadcasted sound</u>? Please follow these instructions to set up the audio: <u>www.anybodytech.com</u> -> Webcasts (bottom of the page)

> ANYBODY TECHNOLOGY

Presenters

Carsten Englert (Presenter)

Sebastian Dendorfer (Presenter)

Arne Kiis (Host/Panelist)

Can you Hear me?

Is your system set up to receive the broadcasted sound? Please follow these instructions to set up the audio: http://www.anybodytech.com/index.php?id=197

<u>Does your screen fit the presentation</u>? Try this: The "Sharing" menu (upper right corner)->View->Autofit

Questions, it is ok to ask

- Launch the-Q&A panel here.
- Type your questions in the Q&A panel.
- Send the question to "Host, Presenter & Panelists"

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Draw back's in clavicular fractures

Clavicle fractures

- 4 % of all fractures
- 30% of all fractures of the shoulder

Clavicula

- S-shape
- Middle third with intramedular room
- Low soft tissue wrapping
- Important for over head positioning of the arm

Plate position superior vs anterior

Regensburg

Reconstruction plate

trauma

post operative

Reconst. plate vs LCP

6 weeks post Op.

revision

Universitätsklinikum LCDCP open reduction

Pre Op

UKR

Post Op

LCP in MIPO Prae Op Post Op

Complications

Universitätsklinikum Regensburg

TECHNOLOGY

Christian D. 26 Jahre

Raised questions

- Why does standard clavicular plate fixation fail?
- Do we need more specialized operative indications based on the fracture line in regard to:
 - implant choice
 - plate, nail
 - position
 - anterior, superior
 - screw choice
 - locking vs cortical screws
 - screw numbers

Objectives

- Analyse the forces acting in the fracture during activities of daily living
- Evaluate the influence of fracture type on the stabilisation potential

From CT to FEM

Compute forces for activities of daily living

Compute tissue/material stress

Generate CAD and FEA models

5 C . S

- Generate model from CT data (ScanIP)
- Insert implant (ScanCAD)
- Generate FE-mesh (ScanFE)

From CT to FEM

What is AnyBody?

- The AnyBody Modeling
 System
 - Musculoskeletal simulation software
 - AnyScript

• The Model Repository

- Body models and applications
- Available at www.anyscript.org

Inverse Dynamic Analysis

Shoulder

118 muscle fascicles on each side
Wrapping of muscles by contact mechanics
Contact criterion in the GH joint
Veeger et al. 1991: J. Biomech. 24, 615-29
Van der Helm 1994: J. Biomech. 27, 551-69
Veeger et al. 1997: J. Biomech. 30, 647-52

AC Spherical jointGH Spherical jointSC Spherical joint

TS Scapula thoracic gliding plane, ellipsoid **AI** Scapula thoracic gliding plane, ellipsoid

Regensburg

GH reaction validation

Bergmann*

Model

*In vivo glenohumeral contact forces—Measurements in the first patient 7 months postoperatively . Bergmann et al. 2007: J. Biomech. 40, 2139 - 49

Nolte et al. 2008: J. Biomech. 41, S492 Dubowsky et al. 2008: J.Biomech. 2008, 41, 2981-2988

Customize model

- Import .stl from Simpleware
- Scale model to fit bone
- Analyse activities of daily living

Analysed models

- Lifting 1 kg in Glenohumeral Flexion 0 75 degree
- Lifting 1 kg in Abduction 10 50 degree
- Forces in the fracture line
- All individual muscle and joint forces for FEA

Forces in fracture - Flexion

Forces in fracture - Abduction

Lifting a weight of 1kg

ANYBODY

TECHNOLOGY

Muscle forces

Example: Deltoideus (pars clavicularis)

Branches of the muscle

From CT to FEM

AnyBody and FEA - workflow

Finite Element Model

- Models generated in ScanFE
- Two different models:
 - Transverse fracture no force transmission in fracture
 - Oblique fracture limited force transmission
- All muscle and joint forces applied

Deformation mode during flexion

Clavicle deformation ANYBODY TECHNOLOGY

Stress in implant

ANYBODY TECHNOLOGY

Discussion

- Main loading directions in the fracture line are i-s and a-p
- During flexion mainly downwards bending of implant
- Scew fractures are more likely to participate in load transfer
- Capability to transfer forces in the fracture line reduces loading on implant
- Even very limited load transfer will help (investigation of influence)
- An ideal implant position would be a combination of i-s and a-p placement

