The webcast will start in a few minutes....

LifeLongJoints

LARGE CLINICAL DATASET FOR ASSESSMENT OF JOINT REPLACEMENTS.

Grant agreement no. NMP-310477

Outline

- Short introduction to the AnyBody Modeling System.
- Background on LifeLongJoints
- Large data set for functional assessments of total hip replacement patients
- Questions and answers

Professor Richard M. Hall LifeLongJoints coordinator School of Mechanical Engineering Leeds University.

Post.Doc. David Lunn Leeds NIHR Biomedical Research Centre Leeds Teaching Hospitals NHS Trust

Host: Morten Enemark Lund R&D Engineer AnyBody Technology

Control Panel

The Control Panel appears on the right side of your screen.

Submit questions and comments via the Questions panel.

Questions will be addressed at the end of the presentation. If your question is not addressed we will do so by email.

Musculoskeletal Simulation

Ergonomic Analysis

Load Cases for Finite Element

Analysis

547 3,7547 2,347 1,3547

Surgical Planning and **Outcome Evaluation**

AnyBody Modeling System

Background on LifeLongJoints

Professor Richard M. Hall LifeLongJoints coordinator School of Mechanical Engineering Leeds University.

Background on LifeLongJoints

- Functional Outcomes of hip arthroplasty
- Implant testing from ADLs
- Public release of the dataset

Post.Doc. David Lunn Leeds NIHR Biomedical Research Centre Leeds Teaching Hospitals NHS Trust

The Leeds Teaching Hospitals NHS Trust

9

Large dataset for functional assessment of total hip replacement patients

Dr David Lunn & Prof Anthony Redmond Leeds Teaching Hospital NHS Trust

- Introduction
- Data collection
- Patient stratification results
- Joint contact forces
- Pre clinical testing- waveform development
- Future plans for the data

THR & Revision Rates

- 93,234 primary total hip replacements took place in the UK (National Joint Registry, 2016)
- THR revision rates at 4.4% at 10 years and a 20 year revision rate of 15%
- The majority of failures will be due to the wear
- Revision rates are linked with patient characteristics

THR & Revision Rates

Bayliss LE, Culliford D, Monk AP, Glyn-Jones S, Prieto-Alhambra D, Judge A, et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: a population-based cohort study. The Lancet.389:1424-30.

Revision Rates

Culliford D, Maskell J, Judge A, Arden NK. A population-based survival analysis describing the association of body mass index on time to revision for total hip and knee replacements: results from the UK general practice research database. BMJ Open. 2013;3.

Current Preclinical Testing

ISO 14242

- 3 KN axial force
- Only walking
- 5 million cycles= 45mins

walking/ day for 1.5 years

• Not THR patients

PARAMETER			MAXIMUM		AVERAGE	Average
SUBJECT'S	HEIGHT -	IN.	72.5	62.5	68.2	5ft 6in
	WEIGHT-	LB.	180	127	140.7	10st 5lbs
	AGE -	YR.	36.9	18.5	21.6	21.6 years
		Ра	ul (1967)			

Improving Preclinical Testing

- Preclinical testing should be-
- Patient specific
 - Movement and loads
- Patient relevant
 - Activities of daily living

Our Task- Develop new more representative waveforms which could be used for preclinical testing.

Recruitment- Patient Specific LIFE

- Large numbers to explore patient characteristics
 - 1300 patients contacted -Clinical database
 - All THR between 1-5 years
 - No other joint replacements
 - No pain

Patients Recruited

Number	Gender	BMI	Age (years)
137 THR patients	70 (Male) 67(Female)	28.1 (3.9)	71.1 (9.6)

Stratification

23.04.2018

Data Collection

Gait Laboratory

- 10 camera Vicon system
- 2 AMTI force plates

- CAST marker set
- 6 upper body markers
- Force plate mounted stairs

Activities of Daily Living

Collected Data

ADL's	Patients Collected
Walk	137
Fast	120
Sit to Stand	120
Stairs	112
Lunge	45
Squat	41
Foot on Bench	n 60
Jog	3
Jump	2

Patient Stratification

- Age- 54 to 64; 65 to 69; 70 to 74 years; 75 to 79;80 and over
- Function- low function; normal function and high function

Gait compared under normal and fast walking conditions

Age Strata

Older patients

- Gait speed,
- Peak abduction moment
- Reduced peak extension

In fast walking differences were less clear

Lunn et al- Submitted to Osteoarthritis & Cartilage

Better indicator of function?

Low Function Group (LF)

- -1SD (≥0.93 m.s⁻¹)
- N=19 (6male)
- Age 77.0±5.9 years
- BMI-28.3±4.8

High Function Group (HF)

- +1SD (≥1.26m.s⁻¹)
- N=19 (10male)
- Age-68.7±6.7 years,
- BMI-27.3 ±3.0

Healthy Control Group (CG)

- N=27 (5male)
- Age-71.2 ±6.9 years,
- BMI-25.63 ±4.2

Age & Function Results

 Walking speed for the HF group was 1.4 ms⁻¹ (95% CI 1.34 to 1.42) compared to 0.8ms⁻¹ (CI 0.78 to 0.85) in the LF group Lunn et al , (ISTA, 2017)

Function Walk and Fast Walk LIFE

- Low function group lower in most joint kinematic and kinetic variables
- Low functioning patients demonstrated a systematically reduced GRF which were reflected in the hip moments

Lunn et al- Submitted to Osteoarthritis and Cartilage

 Age is not a consistent indicator of true function

 Stratifying by gait speed is a better indicator of function

• Stratifying patients is useful to identify heterogeneity within patients.

Activities of Daily Living

Joint Contact Force

3-Jogs

- BMI- Low versus high- Healthy(<25) versus Obese (>30)
- Patient Function- Low versus high functioning

Wear Testing- BMI

UNIVERSITY OF LEEDS Wear Testing- BMI

Wear volume 3-5 million cycles

15-22 mm³

Future Wear Testing-Patient Function

Conclusion

 Stratifying patients by demographic <u>&</u> biomechanical characteristics reveal differences in patient function

 Start to understand relationship between patient function and revision rate

 Help to avoid the ASR failure through improved preclinical testing

Data Release

 A large amount of data generated through this project(~3000 trials)

- First release-
 - 3 patients; 56 trials (walk, fast, ascent, descent etc)

-Data Access Walkthrough-

https://doi.org/10.5518/345

Data Release

• Future releases

• Data requests- <u>d.lunn@leeds.ac.uk</u>

Keep updated via twitter
@davidlunn86
@ProfTonyRedmond
@msdresearch

Acknowledgements

Department of Health Sciences and Technology

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no NMP-310477http://www.lifelongjoints.eu/

I would also like to acknowledge Leeds NIHR Biomedical Research Centre for supporting this work.

Thank you for listening

Data access- https://doi.org/10.5518/345 Questions?

Next LifeLongJoints Webcast (mid May)

Musculoskeletal validation and wear simulation.

Prof. Dr Stephen J. Ferguson Laboratory for Orthopaedic Technology ETH Zürich

Enrico De Pieri, PhD student Laboratory for Orthopaedic Technology ETH Zürich

ANYBODY

Upcomming webcast

26 Apr: Model validation using the anatomical reachable 3-D workspace

www.anybodytech.com

• Events, dates, publication list, ...

Events:

24 Apr: Workshop. Let's meet for the KNEEMO event at OARSI World Congress in Liverpool, UK

7-9 May: Qualisys User meeting. Gothenburg, Sweden

Meet us? Send email to sales@anybodytech.com

Time for questions:

The LifeLongJoints project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no NMP-310477