

The webcast will start in a few minutes....

Musculoskeletal modelling from scratch

CONCEPTS MADE EASY

Outline

- Introduction by the Host
- Musculoskeletal modelling from scratch - *concepts made easy*
 - Webcast and demonstration
- Final words from the host
- Questions and answers

Ananth Gopalakrishnan (Presenter)

Pavel Galibarov (Host)

Control Panel

Who is AnyBody?

<u>AnyBody Technology</u> (Aalborg, DK; Boston, US)

- AnyBody Modeling System
- Licenses, Training, Support
- Consulting

AnyBody Research Group

- DK: Aalborg University Prof. Rasmussen
 - Biomechanics, Ergonomics, Sport, Automotive

- US: Colorado School of Mines Prof. Petrella
 - Biomechanics, Orthopedics, Sport
- GER: OTH Regensburg Prof. Dendorfer
 - Biomechanics, Orthopedics, Gait

What is AnyBody?

A nyBody Modeling S ystem

A nyBody M anaged M odel R epository

- Software product/tool

- Body Model

- Library of applications

Musculoskeletal Simulation

Questions for Inverse Dynamics?

ReWalk Eksokeleton, Argo Medical Technologies

How much external support?

Best design for performance?

Musculoskeletal Modelling From Scratch

CONCEPTS MADE EASY!

Introduction

- Musculoskeletal model
 - \circ Bones \rightarrow Rigid segments
 - \circ DOFs \rightarrow Mechanical joints
 - \circ Muscles \rightarrow Cable actuators

Introduction

- Musculoskeletal model
 - \circ Bones → Rigid segments
 - \circ DOFs \rightarrow Mechanical joints
 - $\circ~$ Muscles \rightarrow Cable actuators

- Inverse Dynamic simulation
 - Input: Motion data
 - Output: Muscle and joint reaction forces

Motion Data

Kinematics + External Forces

coordination strategies

- Focus of this webcast
 - Kinematic aspects of modelling

Simulation software

Kinematics

Kinematics

- Three modelling scenarios
 - ∴ Underlying simulation concepts must also be different?
- Just two core concepts
 - Govern model kinematics in the three scenarios

Agenda

Core Concepts: Measures and Drivers

Segment suspended in space

Ground-Segment revolute joint

Revolute joint

Revolute joint

Revolute joint

- Creating a revolute joint
 - $\circ\,$ Step 1: Measure \vec{r} and rotational euler angles
 - Step 2: Constrain r_x , r_y , r_z , θ_x , $\theta_y = 0$

-5 dof

- Creating a revolute joint
 - $^\circ\,$ Step 1: Measure \vec{r} and rotational euler $\,$ Kinematic Measures angles $\,$
 - Step 2: Constrain r_x , r_y , r_z , θ_x , $\theta_y = 0$ **Drivers**

$$-5 dof$$

- Creating a revolute joint
 - $\circ\,$ Step 1: Measure \vec{r} and rotational euler angles
 - Step 2: Constrain r_x , r_y , r_z , θ_x , $\theta_y = 0$

-5 dof

- 1 DOF still free
 - Can be used to move the segment
- Driver for the 1 DOF
 - Drivers also enforce time varying constraints

But what is the measure to be driven? Candidate: Revolute joint angle θ_z (1 DOF)

Human Model

- Hard Drivers
 - Constraints exactly satisfied
- Soft Drivers
 - Constraints satisfied as closely as possible
- Hard Drivers > Soft drivers

Human Model

- Hard Drivers
 - Constraints exactly satisfied
- Soft Drivers
 - Constraints satisfied as closely as possible
- Hard Drivers > Soft drivers

Hard Driver

Soft Driver

Human Model

• 44 DOFs

- Manually specify trajectories for all DOFs?
 - Feasible to do in AnyBody
- Soft drivers for 44 Measures (Joint angles)
 - Try to enforce default standing position
- Will be overridden by hard drivers, if any!

Placing Foot on Ground

Placing Foot on Ground

Placing Foot on Ground

- Constrain translation (Hard drivers)
- Constrain Rotation (Soft drivers)

Balance

Balance

Balance: Measures and Drivers

• Step 1

 Create measure CoM coordinates in 'Balance Frame'

• Step 2

- Soft driver on y and x components of measure
- Drive towards midpoint on x axis

Kinematics

Fully measured e.g, full MoCap

Partially measured

No exact data, Only task requirements known

- To mimic MoCap motion in model
 - Model & MoCap markers must match up
 - Throughout motion

- MoCap marker
- Model marker

- To mimic MoCap in model
 - Model & MoCap markers must match up
 - Throughout motion

- Solution
 - Kinematic measures calculate marker error
 - Soft drivers on measured error

- To mimic MoCap in model
 - Model & MoCap markers must match up
 - Throughout motion

- Solution: Measures and Drivers
 - Kinematic measures of marker error
 - Soft drivers on error

Solving a single time instant

- To mimic MoCap in model
 - Model & MoCap markers must match up
 - Throughout motion

- Solution
 - Kinematic measures of marker error
 - Soft drivers on error
 - Overall marker matchup, as close as possible

Partially Measured Kinematics

- Marker based drivers for lower limb
- CoM Balance drivers for upper limb

Take Home Message

- Underlying modelling concepts
 - Measures and Drivers
- Soft and hard driver constraints can be combined
 - Variety of Complex motions

What can my model tell me?

• Kinematics

- Joint angles (like in gait analysis)
 - Predict kinematics when full experimental data is unavailable
- Distances/angles between any two segments
- Medical measurements
 - ° E.g., Lordosis, Kyphosis, Pelvic tilt, Pelvic incidence etc.
- Contact areas and CoP at joints
 - Force dependent kinematics (FDK) algorithm in AnyBody
- Muscle and ligament lengths

What can my model tell me?

- Kinetics (Forces)
 - Joint moments (like in gait analysis)
 - Predict Ground Reaction Forces + CoP
 - See webcast on AnyBody's GRF prediction algorithms by Dr. Michael Skipper Andersen
 - Muscle and Joint Reaction forces
 - Joint contact pressures
 - Force dependent kinematics (FDK) algorithm in AnyBody

Musculoskeletal Modelling From Scratch

Concepts made easy!

ReWalk Eksokeleton, Argo Medical Technologies

www.commons.wikimedia.org

pixabay.com

How much external support?

Design load for daily activities?

Best design for performance?

Product design:

- Virtual prototype testing
- Functional improvements

Example:

- Training device
- Focus on soleus and gastrocnemius muscles only
- Virtual testing

Product design:

- Virtual testing
- Data analysis

Example:

- Chen and Jin, J Biosurface and Tribology 2016
- Zimmer NKII during right turn
- Grand Challenge competition to predict in vivo knee loads

Answer research questions:

- Mechanics of body parts
- Understanding function of the human body

Example:

- A numerical study to determine the effect of ligament stiffness on kinematics of the lumbar spine during flexion, Putzer *et al. BMC Musculoskeletal Disorders 2016*
- Ligament function investigations

And applied in many other fields:

- Orthopedics/Trauma
- Human oriented research
- Automotive industry
- Aerospace industry
- Furniture design
- Sports and sports equipment
- Etc.

wiki.anyscript.com

www.anybodytech.com

- Events, dates
- Publication list
- Product download
- Contact information
- Free trial licenses

AnyBody events:

- 22-23 September: The AnyBody Group from Aalborg University at MIMICS 2016 Ass. Professor Michael Skipper Andersen will present: "Image-based musculoskeletal modeling"
- 9-14 October: AnyBody presentation and booth at IROS 2016 International Conference on Intelligent Robots and Systems in Daejeon, Korea
- 18-21 October: AnyBody presentations at WeRob and ICNR 2016 International Symposium on Wearable Robotics in Segovia, Spain

YouTube channel: anybodytech

• Previous webcasts, help, demos, tips & tricks

Time for questions: