

Orthopaedic AnyBody Applications for the Spine

The webcast will begin in a few minutes...

Agenda & Presenters

- Who is AnyBody?
- AnyBody Modeling System (AMS)
- **AMS Applications in Spine Biomechanics**
- Q & A (submit questions anytime) lacksquare

Tony Petrella AnyBody Technology, Inc. Senior Consultant, USA (Presenter)

Associate Professor, Mechanical Engineering **Director, Computational Biomechanics Group** Colorado School of Mines

> Manager, Computational Biomechanics DePuy Orthopaedics, Inc. (2000-2006)

Arne Kiis (Host/Panelist)

Pavel Galibarov

(Panelist)

AnyBody Technology

 Software licenses 2002 • Consulting 2006 • Training 2010 Support • US Office 2011 • AnyGait 2012

AnyBody Modeling System

- Developed in-house for musculoskeletal analysis
- Self-contained system
- Interfacing to...
 - motion capture
 - image-based bone and muscle data
 - finite-element software
 - CAD systems
 - office systems
- Open body model
- Broad and deep model validation
- API for imbedded use

AnyBody Modeling System

Motion & ext Forces as Input:

- Motion Capture (Vicon, Qualisys, ...)
- Joint Angle Input

Forces as Output:

- Muscle Forces (activations)
- Joint Reaction Forces

Dynamic physiological loads

Model Repository

Spine models

Cervical spine

- •7 vertebra
- •136 muscle fascicles
- De Zee et al. 2007: J. Biomech.40, S284

Lumbar spine

- •5 vertebra
- •188 muscle fascicles
- •ligaments (intertransverse, anterior/posterior, ligamenta flava, interspinous, supraspinous)
- Intra abdominal pressure
- •facet joints
- Non-linear IVD stiffness

Hansen et al. 2006: Spine 31, 1888-99 De Zee et al. 2007: J. Biomech. 40, 1219-27 Galibarov et al. 2011, Han et al., Med Eng Phys, 2011

Contact with Force Dependent Kinematics (FDK)

see previous Webcasts on FDK from:

- John Rasmussen
- Michael S Andersen
- Michael Damsgaard at www.anybodytech.com

Andersen et al., 2011

see previous Webcasts from:Michael S Andersenat www.anybodytech.com

Contact with Force Dependent Kinematics (FDK)

Device design alters spine kinematics

Validation

- Direct: In-vivo Forces
 - Magnitude + Phase
- Indirect: Muscle activations

 Onset/Offset + Trend
- Clinical
- AnyBody vs. Other Model

Validation: In-vivo intra-discal pressures

ANŸB

Rasmussen et al. 2009

Spinal motion segment validation

- •Ligaments (IT, ALL, PLL, LF, IS, SS)
- •Facet joints
- Non-linear IVD stiffness

Comparison of motion in one spinal motion segment between a validated FE model and AnyBody model

January, 13th-16th ORS meeting, Long Beach, CA: Galibarov, P. et al., Two Computational Models of the Lumbar Spine: Comparison and Validation, POSTER #: 0786

Meijer et al. J Biomech, Vol. 43(8), 2010, pp. 1590-1597

Preliminary EMG results: isometric lateral flexion

ANYBODY

Subject Specific Scaling

Subject-Specific Modeling Workflow

More information on subject-specific modeling is available in the archived webcast... The New Release of the AnyBody Modeling System, version 5.2 28 June, 2012 at www.anybodytech.com Materialise simpleware

Importance of Muscle Loading

 5 kg in each hand and a posture of 60° flexion, 15° lateral bending, and 25° axial rotation; FE model of L4

Importance of Muscle Loading

 Muscle loaded model exhibits good agreement with experiment

Gadomski et al., ORS 2011

Effect of Lifting 15kg Load

Studying Scoliosis

 Axial twisting caused by rigidity of the sternum

Andre et al., 2006

Fusion – Impact on Adjacent Levels

Fusion – Impact on Adjacent Levels

- Thoracolumbar fusion levels: T12-L1-L2
- Lumbar fusion levels: L3-L4-L5

Spine degeneration, cascading effects

Effect of CoR: Reaction and Facet Forces

TDR: Effects of Surgical Parameters on Posture

- DoE with latin hypercube sampling
- Number of implants (1-3) and AP position (±3mm) varied

Zander et al., 2009 Zander et al., Eurospine 2011

Surgical Damage Changes Muscle Activity

- Surgery: reduction in CSA in range L3-L5
- Finding: lat bending and axial rotation greatest

Effect of Seating Parameters on Muscle Activity

Bactrest Judee Seat pan Forward seat inclination

 No obvious optimum... reclined seat pan high friction → low fatigue, but high spinal loads; converse conditions also true

Rasmussen et al., 2009

Effect of Seat Parameters on Driver Fatigue

- Relationships among muscle activity, joint loads, and seat parameters complex
- Approx 20° of back and pan inclination as well as modest pedal resistance of 20 Nm/rad produced good compromise of comfort and low fatigue

Majid et al., 2011, 2011a

Effect of Seat Parameters on Driver Fatigue

$$LDDFF = 5.0 \left(\frac{CMA}{0.0045}\right)^2 + 1.0 \left(\frac{CNF}{1.0}\right)^2 + 1.5 \left(\frac{CSF}{0.5}\right)^2$$

- LDDFF = long distance driver fatigue function
- CMA = cumulative muscle activity
- CNF = contact normal force
- CSF = contact shear force

Grujicic et al., 2010

Workplace Ergonomics

• Lifting tasks...

Wagner and Reed, 2007

Workplace Ergonomics

• Design of pre-fabricated wall panels to mitigate risk of injury during assembly

Jia et al., 2011

Best practices for meat cutting to reduce fatigue and injury

Pontonnier et al., 2011

Spinal Loads in Pregnancy

Nakashima and Komura, 2010

(b) Standing straight

Erector spinae muscle force

Summary

AnyBody Modeling System is used for:

- Patient Specific Models
- Device Design/Evaluation
- Surgical Planning
- Biomechanics & Device Interaction
- Automotive & Workplace Seating Applications
- Workplace Ergonomics & ADL Applications

Please find full list of publications at www.anybodytech.com

Q & A

- www.anybodytech.com
- www.anyscript.org

 Please see our updated publication list at... <u>http://www.anybodytech.com/index.php?id=publications</u>

Webcast

• This is the final webcast of 2012. Wishing you the best for the new year and see you in Q1 2013! Stay tuned!

Meet AnyBuddies at:

• Pre-ORS and ORS, San Antionio, Texas, 25-29 Jan