Patient-specific morphing of musculoskeletal models

People

John Rasmussen (Presenter)

Søren Tørholm (Host)

Q&A Panel

- Søren Tørholm
- Launch the Q&A panel here.
- Type your questions in the Q&A panel.
- Send the question to "Host, Presenter & Panelists"
- Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Type your question here. (256 characters max)			
Ask:	Host	•	Send
	Host Presenter Host & Presente	er	
	Host, Presenter	& Panelist	s
	All Panelists		

Scaling Scenarios

- Detailed level
 - Purpose-specific modeling based on scans, ultrasound data, and similar.
 - Detailed data for each model element.
- Individual level
 - Sports biomechanics for a particular athlete
 - Gait analysis of a particular individual
- Overall population level
 - Investigate ergonomic compatibility for a broad range of the population
 - Based on anthropometric databases

Ingredients

- Scanned patient-specific data from MRI, CT or similar.
- Software to process the raw data like Mimics[™] or Simpleware[™].
- The AnyBody Modeling System
- The AnyScript Managed Model Repository

Observations

- Morphing maps one set of points on another set of points.
- Origin and target points are finite sets, i.e. not infinitely many.
- The mapping between the finite sets is then used on the entire geometry, i.e. infinitely many points.

How a segment is defined in AnyBody

Geometry – point cloud of muscle insertion points, joint centers, etc.

Muscles insert on bone surfaces, typically on condyles. We must somehow map all the functional points of a model from the standard locations to the patient-specific locations

AALBORG UNIVERSITY Department of Mechanical Engineering

Export original surface from AnyBody

Department of Mechanical Engineering

Import AnyBody bone and patientspecific bone into the image processing software

Register the patient-specific bone on the original

Department of Mechanical Engineering

Identify pairs of bony landmarks and save their coordinates

Import the coordinate pairs into AnyBody

AnyFunTransform3DRBF RBFDef.Type = RBF_ RBFDef.Param = 1; PolynomDegree = 1;	ScaleFunctio Gaussian;	onL5 = {
AnyMatrix randomsh {-0.003895, - {-0.008618, {-0.002999, - {0.002042, - {-0.002533, {0.002364, - {0.001912, {0.002069, - {-0.002830, -	hift = { -0.001451, 0.001028, 0.002645, -0.002629, -0.001206, 0.002108, -0.001066, 0.001865, -0.001692, -0.001915,	0.001701}, -0.002344}, -0.002440}, -0.001487}, -0.002876}, 0.002388}, 0.001906}, -0.000878}, 0.001183}, -0.002315}.
{-0.002085, - {-0.001388, { 0.009382, { 0.002813, {-0.002273,	-0.001003, 0.002440, 0.001788, 0.002817, 0.002215,	-0.002280}, -0.002179}, -0.001514}, 0.001695}, -0.002401}
<pre>}; Points0 = { { 0.072462, { 0.072462, { 0.063322, { 0.065274, { 0.065274, { 0.117145, { 0.117145, { 0.085754, { 0.081586, { 0.099929, { 0.099791, { 0.093791, { 0.093791, }. }</pre>	1.180805, 1.173952, 1.173952, 1.190380, 1.190380, 1.155646, 1.155946, 1.179924, 1.150322, 1.186174, 1.182663, 1.182663, 1.182663, 1.158033, 1.158033,	-0.036767}, 0.036767}, 0.000001}, -0.022513}, 0.013893}, 0.013893}, 0.000001}, 0.000001}, 0.000001}, 0.000001}, 0.000001}, 0.000001}, 0.0023310}, -0.023310}, -0.023417}, 0.023417}
Points1 = Points0	+ randomshift	t;

- Define a scaling function of type AnyFunTransform3DRBF
- Define two sets of points
 - Points0
 - Points1

A A L B O R G UNIVERSITY Department of Mechanical Engineering

AnyFolder Model = {

```
Use the scaling function for the definition of any other node
```


A closer look at our example

Tutorial

😫 AnyBody Tutorials	
1 + s f.	
Hide Back Print Options	
■ AnyBody Fitorials Pilde Back Print Options Contents Index Search ■ AnyBody Tutorials ● ■ Getting started with AnyScript ● ■ Inerface features ● ■ Making things move ● ■ Muscle modeling ● ■ The mechanical elements ● ■ Advanced script features ● ■ Eliding block tutorial ● ■ Diate lement analysis interfacing tutorial ● ■ Diate scaling ■ Lesson 1: Joint to joint scaling methods ■ Lesson 2: Scaling based on patient-specific features ● ■ Lesson 2: Scaling based on patient-specific features ● ■ Lesson 3: Scaling based on patient-specific features ● ■ Lesson 3: Scaling based on patient-specific features	Lesson 3: Scaling based on patient-specific landmarks This tutorial presumes that you have completed <u>Scaling tutorial Lesson 1: Joint to joint scaling methods</u> and <u>Scaling tutorial Lesson 2: Scaling based on external body measurements</u> . They covered such methods as: ScalingStandard, ScalingUniform, ScalingLengthMassFat, ScalingUniformExt, ScalingLengthMassFat, and ScalingLengthMassFatExt. This lesson introduces an advanced scaling method based on a non-affine transformation of a set of source landmarks into a set of target points using a radial basis function (RBF) approach. Patient-specific scaling Previously described scaling schemes are based on anthropometric measurements and an affine transform scaling. As such they do not reconstruct needed bone morphology to a very high level of detail, i.e. local deformities of certain bone features may not be covered by such scaling. The scaling law described in this lesson is based on a surface approximation which must transform (not necessary in a linear manner) a set of given points (source landmarks) into a set of known subject-specific points (target landmarks). For this purpose the following approximation is constructed: $f(y) = \sum_{n=0}^{\infty} c \phi(y = x) + \pi_n(y)$
	where c_j are the coefficients of the RBF functions ϕ , computed based on the source and target landmarks, p is the polynomial of order $q\phi is the RBF function, which can take one of the following forms:\phi(r) = e^{-\alpha r^2}, \alpha > 0, - Gaussian function, or\phi(r) = r^2 * ln(r) - Thin plate spline, or\phi(r) = \sqrt{r^2 - \alpha}, \alpha < r^2, - Multiquadratic function, or other.To define such a transform in AnyScript one can use a template provided by the AnyBody Modeling System:AnyFunTransform3DRBF =$

Final remarks

- RBF scaling is not primarily a method to morph a standard bone to a patient's bone – we already have the patient's bone from the scan.
- RBF scaling uses the difference between the two bones to map existing musculoskeletal data that we do not have from scans from the standard model to the patient.

Online resources

- <u>www.anybodytech.com</u>
 - Free demo license for the AnyBody Modeling System
- www.AnyScript.org
 - Discussion forum
 - Wiki
 - Model repository
- www.anybody.aau.dk
 - Homepage of the research group

Q&A Panel

- Launch the Q&A panel here.
- Type your questions in the Q&A panel.
- Send the question to "Host, Presenter & Panelists"
- Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Vipe your question here. (256 characters max)		
Ask	Host Send	
	Host Presenter Host & Presenter	
	Host, Presenter & Panelists All Panelists	

