Joint Forces within the Ankle during Level Walking

Mike Arakilo

Why not spend the time checking these points: <u>Does your screen fit the presentation</u>? Try this: The "Sharing" menu (upper right corner)->View->Autofit

<u>Is your system set up to receive the broadcasted sound</u>? Please follow these instructions to set up the audio: <u>www.anybodytech.com</u> -> Webcasts (bottom of the page)

Presenters

		F	
	Ð		

Mike Arakilo (Presenter)

Søren Tørholm (Panelist)

Casper Gerner Mikkelsen (Webcast host)

Q&A Panel

Launch the Q&A panel here. - 0&A • Type your questions in the Q&A panel. Type your question here. (256 characters max) Send the Ask: Host question to Host Presenter "Host, Presenter Host & Presenter Host, Presenter & Panelists & Panelists" All Panelists Mic Dams

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Send

Purpose of the Project

"Virtual Assessment of the Latest Generation of the Total Ankle Replacement Using Motion Analysis "

Investigate the reasons for ankle joint replacement failure and possibly optimise ankle prosthesis design.

More Perspectives

• TAR perspective is part of this work

• Same work can be done for other many activities ...

More Activities ...

Optimizing new designs related to human health *i.e. new prosthesis designs , new designs for cars, seats, ...*

More Activities

Enhancing human conditions in various locations *i.e. muscular activities for athletes, bone loss/gain for astronauts*

Can you Hear me?

<u>Does your screen fit the presentation</u>? Try this: The "Sharing" menu (upper right corner)->View->Autofit

<u>Is your system set up to receive the broadcasted sound</u>? Please follow these instructions to set up the audio: <u>www.anybodytech.com</u> -> Webcasts (bottom of the page)

Brief Summary of the Talk

- Total Ankle Replacement (TAR) has a lack of reliability over the long term as a result of few number of investigations compared to THR and TKR
- Few Ankle Joint Forces data is available through literature and go back to the 1970s ... Compared to 2008 !
- New model design for Collecting MoCap Data and investigate the resultant musculoskeletal and ankle joint forces in AnyBody

Why TAR ?

- Treatment of ankle joint diseases, Osteoarthritis
- TAR maintains normal motion of the joint and distribution of loads on the surrounding structures

Questions, it is ok to ask

- Launch the-Q&A panel here.
- Type your questions in the Q&A panel.
- Send the question to "Host, Presenter & Panelists"

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Drawbacks of TARs

- Small size of the joint
- High resultant Moment
- High Stress, High Compressive Forces
- Disregard for anatomic component shape and physiological ankle biomechanics
- Poor reproduction of the normal mechanics of the ankle

Available Data on Ankle Joint Forces

"Forces and Motion Analysis of the Normal, Diseased and Prosthetic Ankle Joint" *Richard N Stauffer* <u>1977</u>

2D !

ANYBODY

ANY BODY

Forces were calculated:

- F_A tensile force in Anterior Tibial Tendon
- -*F*_κ tensile force in Achilles Tendon
- $-F_{N}$ compressive forces across Ankle Joint
- FT tangential forces across Ankle Joint

TECHNOLOGY

Aim of this Study

- Lack of knowledge on ankle joint internal forces
- Knowledge important because TAR not so reliable

Improve Data and hence Design !

Methodology

Gait Experimental: Vicon Model Simulation: AnyBody

Gait Experimental

Gait Data Collection Using Vicon System

- Custom Model definition with 22 markers (MikeArakiloGait)
 - LASI, RASI, LPSI, RPSI
 - LTHI, RTHI, LKNEE, RKNEE
 - ≻ LTIB,RTIB
 - LANK, RANK, LMANK, RMANK
 - ➢ LHEE, RHEE, LTOE, RTOE
 - ➢ L1MEH, R1MEH, L5MEH, R5MEH

TECHNOLOGY

Gait Experimental

Methodology being adopted Gait Data Collection using Vicon System®

- Vicon Cameras MxF40
 - ✓ 8 Cameras used
 - ✓ 4 Megapixel
 - ✓ Data taken at 50 Hz

Prospective Data to be taken on 120 Hz

Gait Experimental

Methodology being adapted Gait Data Collection using Vicon System **KISTLER FORCE PLATES** \geq 8 Channels: 4 on Z-D, 2 on X-D and 2 on Y-D Analogue Data at 1000 Hz 4 X 3 1 azo 2 Z ANYBODY

TECHNOLOGY

AnyBody Model

Methodology being adapted

Purpose of AnyBody Gait Model

Construct a musculoskeletal body computer stimulation of the ankle joint. The model will then be employed to predict the forces transmitted through the joint and surrounding tissues.

AnyBody Model

Description of Gait Model

- Anybody Musculoskeletal Model with no Muscles on the Trunk
- Anybody TLEM Model of the Leg:
 - ✓ More Sophisticated Muscles
 - More Muscles around the ankle Joint
- Ankle with 2 separate
 <u>REVOLUTE</u> joints:
 - ✓ Subtalar Joint
 - ✓ Ankle Joint

AnyBody[™] Model

Muscle Recruitment Solver:

- MinMax Solver
- Quadratic Solver

Forces Collected:

- GRF Ankle Joint
- Achilles Tendon
- Tibialis Anterior/Posterior
- Peroenus

Simulation Results of the Gait

*t= real time gait during walking*Animations are available through email

— Main.OptStudy.Output.OptModel.HumanModel.Right.Leg.JntDOF.Ankle.Constraints.Reaction.Fout[2]

— Main.OptStudy.Output.OptModel.HumanModel.Left.Leg.JntDOF.Ankle.Constraints.Reaction.Fout[2]

ANYBODY TECHNOLOGY

TECHNOLOGY

ANYBODY TECHNOLOGY

MinMax Solution

GFR Ankle Joint Vector

MinMax Solution Right

GFR Ankle Joint Vector, Right Leg, MinMax

-GFR Ankle Joint Vector, Right Leg, MinMax

QP Solution Right

GFR Ankle Joint Vector, Right Leg, QP

-GFR Ankle Joint Vector, Right Leg, QP

TECHNOLOGY

GFR Ankle Joint Vector

MinMax Solution Left

GFR Ankle Joint Vector, Left Leg, MinMax

---GFR Ankle Joint Vector, Left Leg, MinMax

5.25

5.45

5.65

4.65

4.85

5.05

QP Solution Left

GFR Ankle Joint Vector, Left Leg, QP

-GFR Ankle Joint Vector, Left Leg, QP

TECHNOLOGY

GRF Ankle Joint Vector Comparison !

QP — MinMax

ANYBODY

GRF Ankle Joint Vector Comparison !

-QP Left -MinMax Left

ANYBODY TECHNOLOGY

Right Ankle Total Forces Vector
 Comparison between Quadratic and Simple Solution

ANY BODY

ANYBODY

ANYBODY

ANYBODY

MinMax Solution

Tibialis Anterior Forces

MinMax Solution

Tibialis Posterior Forces

MinMax Solution

ANYBODY

ANY BODY

Tibialis Posterior Forces

MinMax Solution

Muscle Activity

Discussion

Discussion

- Forces Computed in the ankle <u>DO NOT</u> depend on the recruitment solver in AnyBody
- More interesting ! ...
- Importance of the Muscle
- Not a problem in AnyBody : more muscles than degrees of freedom.

Summary

- Present TARs are among the joints replacement that don't have reliable results
- Further Joint Data needed for investigation
- Data Collected in Vicon and Processed in AnyBody
- Results lie in an acceptable range

• Therefore ...

Current/Future Work

- Use an FE Model to investigate forces and on the bones and stresses on the Prosthesis (work in progress)
- Collect data from a defined Normal and Diseased population
- Process Data and Compare !

In Order To Achieve this Work

- We need to get TARs samples as well as TARs CAD file.
- Collaboration will be made.
- Confidential Treatment of files.
- Study will be done using those TARs and hence more logical and realistic improvements can be achieved.

In Order To Achieve this Work

- Opportunity to make a business and/or financial collaboration
- Financially and Personally difficult to rely on my family and meet the cost of living

Contact Options

Mike Arakilo

PhD Biomedical Engineering

m.arakilo@dundee.ac.uk

<u>Mob:</u> +44 7864 922291

<u>*Tel:*</u> +44 1382 496322

• University of Dundee

College of Medicine, Dentistry & Nursing Ninewells Hospital & Medical School TORT Centre, Dundee DD1 9SY, Scotland, UK

Thank You ...

The next webcast hosted by AnyBody Technology will be held on January , 22nd 2009.

<u>Title:</u>

"Optimization of implant and prostheses design with AnyBody boundary conditions for FE Analysis", by <u>Alexander Nolte</u>, CADFEM GmbH. "

We hope to meet you there ...

<u>Special Thanks to :</u> My Supervisor : Dr Tim Drew John Rasmussen (Aalborg University) Arne Kiis (Anybody Technology)

Q&A Panel

Launch the Q&A panel here. - 0&A • Type your questions in the Q&A panel. Type your question here. (256 characters max) Send the Send Ask: Host question to Host Presenter "Host, Presenter Host & Presenter Host, Presenter & Panelists & Panelists" All Panelists Mic Dams

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

