Adjusting the Axle Placement in Wheelchair Users to Minimize Shoulder Joint Forces

Sarah Sullivan-Dubowsky

The web cast will start in a few minutes... .

Why not spend the time checking these points: <u>Does your screen fit the presentation</u>? Try this: The 'S haring" menu (upper right corner)->View->Autofit

Is your system set up to receive the broadcasted sound?

Please follow these instructions to set up the audio: www.anybodytech.com -> Webcasts (bottom of the page)

Presenters

Søren Tørholm (Panelist)

Arne Kiis (Webcasthost)

Questions, it is ok to ask

- Launch the Q&A panel
 here.
- Type your questions in the Q&A panel.
- S end the question to "Host, Presenter & Panelists"

ype your question here. (256 characters max)				
Ask:	Host	-	Send	
	Host Presenter			

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Overall Goal

- C reate a patient-specific model of wheelchair propuls ion for investigating axle placement to minimize shoulder joint forces.
- Potential for use in prescribing wheelchairs
- Potential for use as an intervention

Overview

- Review of data collection and analysis
- Construction and validation of model
 - EMG activity comparisons between computational and experimental results
 - Kinetics comparisons when model is driven by torque
- Parametric study investigating the effect of axle placement on shoulder joint forces

Data Acquisition

Can you Hear me?

<u>Does your screen fit the presentation</u>? Try this: The 'S haring" menu (upper right corner)->View->Autofit

<u>Is your system set up to receive the broadcasted sound</u>? Please follow these instructions to set up the audio: www.anybodytech.com -> Webcasts (bottom of the page)

Model

Validation (I) - EMG Comparison

1. Anterior deltoid; 2. Biceps; 3. Pectoralis major; 4. Posterior deltoid; 5. Trapezius; 6. Triceps

- Muscles in the model are represented as multiple fibers
- Compare each computational fiber's activity with experimental activity
- Highlighted (purple) fibers correspond to participant EMG

Mean Absolute Error (MAE)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} \left| MA_i - EA_i \right|$$

Previous reports¹ reported mean MAE for many tasks to be 0.078-0.139. My range is: 0.068-0.224 (neglecting the triceps). All our muscles were collected via surface electrodes; 6 of 10 in de Zee article were collected via finewire.

Muscles	Subject
Biceps left	0.138
Biceps right	0.224
Anterior Deltoid left	0.052
Anterior Deltoid right	0.070
Posterior Deltoid left	0.198
Posterior Deltoid right	0.096
Pectoralis Major left	0.068
Pectoralis Major right	0.094
Trapezius left	0.189
Trapezius right	0.078
Triceps left	0.558
Triceps right	0.547

1. de Zee, M., et al. Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis. Journal of Biomechanics. 40 (2007). 1192-1201.

Validation (II) - Kinetics Comparison

- Alter model inputs :
 - Calculate wheel torque (F_t) from SMART^{Wheel} data
 - Drive the model with this torque (and 3-D kinematics)
- Compare the resulting Fx, Fy, and Fz forces at the hand with the original SMART^{wheel} data

S houlder Joint Investigation

- Good matching between the computational and experimental muscle activities
- How do shoulder joint forces compare?
- Comparison to previous studies
 - Physiological in-vivo comparisons
 - Computational comparisons

• Transparent muscles and bones to allow us to look "into" the shoulder joint socket

- Green arrows: Boundaries of the glenoid cavity
- Black circles outline this defined area
- Blue arrow: Resultant force in the glenoid cavity
- Purple arrows: Force distribution in the glenoid cavity

S houlder joint forces at approximately 15, 30, 45, 60, 75,

and 90% of the contact phase of propulsion

S houlder Joint Forces

My results versus in-vivo validated results (above, right). The Fx, Fy, and Fz forces throughout 10% increments of the propulsive phase were averaged over 10 push strokes and graphed. Overall shoulder joint forces for both scenarios are of the same magnitude.

^{2.} Rasmussen J., et al. Comparison of a Musculoskeletal S houlder Model with In-Vivo Joint Forces. 2007 International Society of Biomechanics XXI Congress. Taipei, Taiwan. July 1-5, 2007.

Parametric Study

 Ran a parametric study looking at the shoulder joint forces at different axle placements. The axle placement was increased and decreased, in both height and anterior/posterior positioning, by 5 centimeters in all directions.

Parametric Results

Original axle placement is marked with intersecting

Parametric Results Cont.

Original seat height is marked by black vertical line. For this subject, the original axle placement is

Parametric Summary

- True minimum at a seat height 2.5 cm lower
- 2.38 N difference between ideal seat height and current seat height

-Less than 1% (334.34 N - 331.96 N)

- Is this significant?

• Axle placement 5 cm lower and more forward results in nearly 15% increase in joint load (334.34 N - 383.86 N).

Future Work

- Analysis of a model pre- and post- axle adjustment
 - Individual appears to have good axle placement
 - It is unlikely that everyone does
- Database of participants to analyze
 - Using model, find a subject whose axle placement is not ideal
 - Adjust axle-placement and compare pre- and post- shoulder joint forces

Q&A Panel

•	Launch the Q&A panel here.	▼ 084					P
•	Type your questions in the Q&A panel.	Type your question here. (2	56 characters max)	→			×
•	S end the question to 'Host, Presenter & Panelists"			Ask:	Host Host Presenter Host & Presenter Host, Presenter & P All Panelists Mic Dams	▼ S	

Notice the answer displays next to the question in the Q&A box. You may have to scroll up to see it.

Acknowledgments

- Rutgers University
- Kessler Medical Rehabilitation and Research Edication Center (KMRREC)
- Aalborg University and the AnyBody Project

- Multiple push strokes:
 - Different views
 - Don't anticipate