

WearRA Webinar Series - Modeling and Simulation for Wearable Robots

Control Panel

The Control Panel appears on the right side of your screen.

Submit questions and comments via the Questions panel.

Questions will be addressed at the end of the presentation. If your question is not addressed we will do so by email.

Outline:

- Introduction
 - AnyBody Group
 - AnyBody Modeling System
- Presentation
 - Exoskeletons and AnyBody
 - AnyBody Examples for Exoskeletons
 - AnyBody contribution to the field of exoskeleton
 - Conclusions
- Final words
- Questions and answers

Mohammad S. Shourijeh PhD, R&D Engineer, AnyBody Tech. <u>mss@anybodytech.com</u>

Moonki Jung, PhD Sr. Application Engineer

Moonki Jung, PhD Sr. Application Engineer, AnyBody Tech. <u>mj@anybodytech.com</u>

AnyBody Group

<u>AnyBody Technology</u> (Aalborg, DK; Boston, US)

- Licenses, Training, Support
- Consulting

AnyBody Research Group

- DK: Aalborg University Prof. Rasmussen
 - Biomechanics, Ergonomics, Sport, Automotive
- US: Colorado School of Mines Prof. Patrella
 - Biomechanics, Orthopedics, Sport
- GER: OTH Regensburg Prof. Dendorfer
 - Biomechanics, Orthopedics, Gait

4

AnyBody Modeling System

- Simulations of Musculoskeletal systems
 - Multibody kinematic and dynamic analyses
- AnyBody Managed Model Repository
 - Applications
 - Open Body Models
- Special simulation features
 - Man-machine interaction simulation
 - Reaction force prediction
 - Imaging \rightarrow Patient-specific anatomy

Rasmussen et. al. (2011), ORS Annual Meeting

Musculoskeletal Simulation

TECHNOLOGY

Simulation Work flow

Exoskeletons and AnyBody

Human-Exoskeleton example

- "I have a conceptual design of an exoskeleton, how will it affect a human subject?"
 - How to attach an exoskeleton to the human?
 - What are the affected human variables?

Human-Exoskeleton model

- What actuator in exoskeleton?
 - 6 actuators (hip, knee and ankle)
 - 2 different actuators types
 - STR: Strong torque actuator
 - MED: Medium torque actuator
- Interactions between human and exoskeleton
 - Conceptual straps at pelvis, both thighs, both shanks
 - 6 DOFs forces and moments

Human-Exoskeleton model

- Definition of motion
 - Parameterized joint angle definition available
- External forces
 - Prediction of ground reaction forces

Results in Human

TECHNOLOGY

Results in Exoskeleton

Knee Actuator Moment

TECHNOLOGY

Knee Actuator Power

AnyBody Exoskeleton Demo Cases

- Metabolic energy cost evaluation
- Exoskeleton anlaysis using motion capture data
- Human-exoskeleton interaction
- Soft exoskeleton

Metabolic power plays an important role in the design and evaluation of exoskeletons

ANYBODY

Metabolic power criterion for joint level assistance

Metabolic Energy Consumption in a Box-Lifting Task*

* M.S. Shourijeh, M. Jung, M. Damsgaard, Metabolic Energy Consumption in a Box-Lifting Task: A Parametric Study on the Assistive Torque, WeRob 2016

Countermeasure exercise in space

Evaluating the effect of assistive devices on human body using motion capture data

TECHNOLOGY

20

Active (red) and passive (green) linear actuators in an AnyBody hop simulation

Simulation of an industry exoskeleton during wire winding & sandblasting (<u>www.movaid.eu</u>)

Conceptual design of passive exoskeleton with gravity compensation (www.movaid.eu)

AXO-SUIT project (www.axo-suit.eu)

AnyBody contribution to the exoskeleton projects

AnyBody simulations will:

- Find optimal parameters/variables of exoskeleton
 - Torque
 - Power
 - Kinematics
 - Stiffness
- Comfort/Endurance Analysis
 - Joint loads
 - Muscle activations
 - Metabolics
 - Human/Exo interaction force/pressure

Cho et al. (2012)

Conclusions

- AnyBody can model simulate the exoskeletons during three phases as:
 - Pre-prototyping (optimize key parameters)
 - Post-prototyping evaluation (effect on the human body)
 - Operation (individualized optimization of the adjustments)

Webcasts

- New round of webcasts will start after summer 2016
- Check our YouTube channel ('AnyBody Technology') for previous webcasts

• Events

- IROS 2016 (South Korea)
- WeRob 2016 (Spain)

www.anybodytech.com

• More useful links, publication list, ...

inquiry@anybodytech.com

• Contact for any kind of questions

Time for questions

