

<u>S. J. Mellon<sup>1</sup></u>, G. Grammatopoulos<sup>1</sup>, M. Andersen<sup>2</sup>, H. Pandit<sup>1</sup>, E. C. Pegg<sup>1</sup>, H.S. Gill<sup>1,3</sup>, D. W. Murray<sup>1</sup>

- 1. NDORMS, University of Oxford, UK
- 2. University of Aalborg, Denmark
- 3. University of Bath, UK



- THR is most often carried out to treat advanced osteoarthritis
- Majority of patients receive a replacement with a metal-on-polyethylene bearing







- In England and Wales, the mean age of patients undergoing THR is 67 years
- However, ~8000 operations (12%) each year on people younger < 55 years</li>





- Patients > 55 yrs, THR provides:
  - effective pain relief
  - restored function
  - excellent implant survival
- Patients < 55 yrs, THR provides:</p>
  - pain relief
  - functional improvement
  - However, only approx. 65% of implants last 17 years (Swedish Arthroplasty Registry)





- Aseptic loosening, due to wear, is the most common mode of failure for THR
- Articulation of metal-on-poly generates wear particles of polyethylene with a diameter of 0.3–10 µm
- Immune response to these particles causes resorption of bone around prostheses which leads to loosening - Osteolysis





- 4% of all THR dislocate
- Early < 6 months after surgery</p>
  - Due to mal-positioned components

#### Late

 Most often a product of bearing wear







- Early implant failure is a particular problem in younger patients who are more active and have a longer life expectancy than older patients
- Dislocation remains a risk for conventional THR



THR:Large Heads Hard Bearings

- Desire for alternative bearing surfaces that have lower wear and allow larger head sizes
- Larger heads = reduce risk of dislocation
   32mm diameter and above
- Hard bearings reduce wear
  - Ceramic-on-ceramic (CoC)
  - Metal-on-metal (MoM)

THR:Large Heads Hard Bearings

- Desire for alternative bearing surfaces that have lower wear and allow larger head sizes
- Larger heads = reduced risk of dislocation
   32mm diameter and above
- Hard bearings reduced wear
  - Ceramic-on-ceramic (CoC)
  - Metal-on-metal (MoM)



#### Metal-on-Metal (MoM)

- MoM bearings, made of CoCr alloy, first used for THR in 1938, later re-introduced during the 1950s and 1960s
  - Variable survival results
  - implants that survived exhibited very low wear



Wiles' "ball-andcup athroplasty" McKee's "three-claw" cup with Thompson stem

McKee's cemented cup

Ring's design with cementless cup



## Metal-on-Metal (MoM)

- MoM bearings, made of CoCr alloy, first used for THR in 1938, later re-introduced during the 1950s and 1960s
  - Variable survival results
  - implants that survived exhibited very low wear
- The "second generation" of MoM articulation devices was introduced in the early 1990s - MoM prostheses with a conventional THA head diameter (28–32 mm)
  - exhibited good survival and low wear



Metasul 2<sup>nd</sup> generation MoM



## Metal-on-Metal (MoM)

- MoM bearings, made of CoCr alloy, first used for THR in 1938, later re-introduced during the 1950s and 1960s
  - Variable survival results
  - implants that survived exhibited very low wear
- The "second generation" of MoM articulation devices was introduced in the early 1990s - MoM prostheses with a conventional THA head diameter (28–32 mm)
  - exhibited good survival and low wear
- Introduction of "third-generation" MoM bearings in the 1990s
  - Wear simulator studies showed up to 100 times less wear than MoP bearings



#### 3<sup>rd</sup> Gen MoM

#### Manufactured with larger femoral component diameters (38–64 mm)

#### MoM THR







## 3<sup>rd</sup> Gen MoM

 Manufactured with larger femoral component diameters (38–64 mm)

#### **MoM Hip Resurfacing**





Resurfacing is bone-preserving i.e. potentially easier to revise to THR



#### Metal-on-Metal Hip Resurfacing Arthoplasty (MoMHRA)





# Metal-on-Metal Hip Resurfacing Arthroplasty (MoMHRA)

- <sup>9</sup> 3<sup>rd</sup> gen MoM bearing surfaces were thought to be ideal for young and active patients:
  - Larger heads reduced dislocation risk
  - Resurfacing is bone-preserving i.e. potentially easier to revise to THR
  - Low wear





#### **MoMHRA** Procedure

 Recommended orientation is 40° inclination and 20° anteversion





#### **MoMHRA** Procedure

- Recommended orientation is 40° inclination and 20° anteversion
- Acetabular component is less than hemispherical
   coverage varies between manufacturers
- Diametrical mismatch between bearing surfaces
   clearance varies between manufacturers
- All implants are Co-Cr alloys



#### MoMHRA

- Well functioning MoMHRA wear rates of < 5µm/year</li>
- Under optimal lubrication conditions tribochemical reaction of metallic bearing surfaces with synovial fluid
  - Organic layers formed at bearing surfaces
  - Prevents metal-on-metal contact
  - Limits wear



## MoMHRA – Wear & Metal Ions

- Systemic levels of chromium (Cr) and cobalt (Co) ions in whole blood, serum, or urine correlate with the linear and volumetric wear of the femoral component
- Once running-in phase is completed, i.e. ~12 months, systemic Cr and Co concentrations are considered surrogate markers of *in vivo* wear



|           | File View Help                             |                 |        |
|-----------|--------------------------------------------|-----------------|--------|
| ORD       | - Audio                                    |                 |        |
| <u></u>   | Mic & Speakers Settings                    |                 |        |
|           | MUTED 400                                  | 00000000        |        |
|           | - Questions                                | 5               |        |
| Submit to | Presenter,<br>[Enter a question for staff] | Panelist,       | & Host |
|           |                                            | Send            |        |
|           | Webinar ID: 550                            | Now<br>-911-487 |        |
|           |                                            |                 |        |



# WEAR OF MoMHRA

- Increased wear –
   Disturbance of fluid film lubrication – Edge loading
- Edge-loading occurs when the hip reaction force passes through the edge of the acetabular component
- Acetabular component orientation is a factor influencing edge-loading risk





# WEAR OF MoMHRA

- Increased wear is associated with failure of hip resurfacings and the pseudotumour development
- Increased wear follows disturbance of fluid-film lubrication under edge-loading conditions



 Acetabular component orientation is a factor influencing edgeloading risk



# Metal Wear & Soft Tissue Reactions

Soft tissue reactions associated with abnormally high levels of wear to the MoM bearing

- Extensive tissue necrosis
- Bone loss
- Pain
- Pseudotumours associated with metal-on-metal hip resurfacings. Pandit et al. (2008) JBJS British Volume, Vol 90-B, Issue 7, 847-851
- Adverse reaction to metal debris following hip resurfacing: The influence of component type, orientation and volumetric wear. Langton et al. (2011) JBJS – British Volume, Vol 93-B, Issue 2, 164-171



# **MoMHRA Soft Tissue Reactions**

- Pseudotumours can be solid, cystic or mixed in nature
- Various names i.e. cysts, bursae, ALVAL (aseptic lymphocytic vasculitis associated lesions), ARMD (adverse reactions to metal debris), ALTR (adverse local tissue reaction) and pseudotumours
- Regulatory bodies (MHRA & FDA) issued guidance related to the management of MoM patients



#### Pseudotumour





#### Pseudotumour

- Incidence is greater in females with MoM
  - Differences in bone size and native anatomy are thought to be principal factors for this observed difference



#### MoM in the Media

|                                                 |                                           |            |            | _          |        |         |        |       |
|-------------------------------------------------|-------------------------------------------|------------|------------|------------|--------|---------|--------|-------|
| HOME PAGE                                       | TODAY'S PAPER                             | VIDEO MOS  | T POPULAR  | U.S. Editi | on 🔻   |         |        |       |
| The New Hork Times Business Day                 |                                           |            |            |            |        |         |        |       |
| WORLD U                                         | .S. N.Y. / REGIO                          | N BUSINESS | TECHNO     | LOGY SC    | IENCE  | HEALTH  | SPORTS | OPIN  |
|                                                 |                                           | Search     | Global De  | alBook M   | arkets | Economy | Energy | Media |
| F.D.A.<br>Impla<br>By BARRY MI<br>Published: Ja | Seeks to<br>nts<br>EIER<br>nuary 16, 2013 | Tighter    | n Regu     | lation     | of A   | All-Me  | etal H | ip    |
| HOME PAGE                                       | TODAY'S PAPER                             | VIDEO MOS  | T POPULAR  | U.S. Editi | on 🔻   |         |        |       |
| The New York Times Business Day                 |                                           |            |            |            |        |         |        |       |
| WORLD U.                                        | S. N.Y. / REGIO                           | N BUSINESS | TECHNOL    | LOGY SCI   | ENCE   | HEALTH  | SPORTS | OPINI |
|                                                 |                                           | Search     | Global Dea | alBook Ma  | arkets | Economy | Energy | Media |
| J.&J. U<br>By BARRY ME<br>Published: Ma         | Unit Phase                                | ing Out    | All-M      | etal H     | lip E  | )evice  | S      |       |



#### Revision

- MoM hips with pseudotumour are most often revised to MoP or CoC THR
- Outcome of revision for pseudotumour is poor
- Revision is more difficult surgery
- Revision is costlier to the healthcare provider



#### MoM Cohort

- Investigated 201 asymptomatic resurfaced hips:
  - 4.4% prevalence pseudotumour



#### Serum Metal Ion Levels





# **CUP ORIENTATION - PT**

- Wide scatter of cup orientations
- Identified an
   optimum zone that
   reduced risk by a factor of 4
- Outside zone:
   not all have PT
- Inside zone:
   could have PT





# **CUP ORIENTATION - IONS**

- Metal ions are surrogate markers of wear
- Similar observations:
  - Outsize zone can have low wear
  - Inside zone can have high wear





# Metal Wear: Edge-Loading

Risk of biological reaction is lower for an acetabular orientation of 40°(±10) inclination and 20°(±10) anteversion

However,

 Pseudotumours have been reported in patients with well positioned components

Grammatopoulos et al. (2011) JBJS, 93-B, SUPP\_II, 223.



# WEAR = DYNAMIC PROCESS

| ELSEVIER Journal of Biomechanics 34 (2001) 873–881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JOURNAL<br>OF<br>CHANICS<br>Decate/jbiomech<br>IBiomech.com                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Duration and frequency of every day activities<br>in total hip patients<br>M. Morlock <sup>a,*,1</sup> , E. Schneider <sup>b</sup> , A. Bluhm <sup>a</sup> , M. Vollmer <sup>a</sup> , G. Bergmann <sup>c</sup> ,<br>V. Müller <sup>d</sup> , M. Honl <sup>d</sup><br><sup>a</sup> Biomechanics Section, Technical University Hamburg-Harburg, Denickestrasse 15, 21073 Hamburg, Germany<br><sup>b</sup> AO Research Institute, Davos, Switzerland<br><sup>c</sup> Oskar-Helene-Heim, Free University of Berlin, Berlin, Germany<br><sup>d</sup> Department of Orthopedic Surgery, General Hospital Barmbek, Hamburg, Germany | <ul> <li>Sitting: 44%</li> <li>Standing: 24%</li> <li>Walking:10%</li> <li>Stair climbing: 0.5%</li> </ul> |

Sit to stand (STS) is a frequently occurring action (approximately 50 times per day)

Important transition as hip goes from resting to load bearing state



#### **Research Question**

Do individual activity patterns during activities of daily living insulate some patients from the risk of edge-loading?



#### **COHORT SELECTION**





#### DEMOGRAPHICS

|                    | Well –Positioned | Mal-Positioned Cups |                 |  |
|--------------------|------------------|---------------------|-----------------|--|
|                    | Cups             |                     |                 |  |
|                    | Low lons (n=6)   | Low lons (n=5)      | High lons (n=4) |  |
| Gender (M/F)       | 4/2              | 3/2                 | 1/3             |  |
| Age Years          | 57               | 43                  | 46              |  |
| Weight (kg)        | 73               | 73                  | 66              |  |
| Size (mm)          | 52               | 49                  | 47              |  |
| Chromium<br>(µg/l) | 1.5              | 1.7                 | 6.7             |  |
| Cobalt (µg/l)      | 1.5              | 1.8                 | 6.9             |  |



# COHORT'S CUP ORIENTATIONS





|           | File View Help                             |                 |        |
|-----------|--------------------------------------------|-----------------|--------|
| ORD       | - Audio                                    |                 |        |
| <u></u>   | Mic & Speakers Settings                    |                 |        |
|           | MUTED 400                                  | 00000000        |        |
|           | - Questions                                | 5               |        |
| Submit to | Presenter,<br>[Enter a question for staff] | Panelist,       | & Host |
|           |                                            | Send            |        |
|           | Webinar ID: 550                            | Now<br>-911-487 |        |
|           |                                            |                 |        |



#### PROTOCOL

#### Motion Analysis



**CT Scan** 



Lower extremity kinematics during functional activities Relative positions of acetabular and femoral components



# GAIT-LAB & CT DATA INCORPORATION







# **Hip Joint Centre Calculation**

- Points at cup edge in CT slices chosen
- Plane defined through these points
- Circles fitted through combinations of points to find the average centre





# **Hip Joint Centre Calculation**

 HJC was found by projection from average centre relative to cup diameter and coverage angle





## HJC: Unimplanted Side



- Unimplanted hip was segmented in Mimics (v.14,Materialise, Belgium)
- HJC was centre of sphere fitted to femoral head (Geomagic Studio 11)

![](_page_45_Picture_0.jpeg)

# **MUSCULOSKELETAL MODEL**

![](_page_45_Figure_2.jpeg)

(B) Next, the stick-figure model was used to estimate the kinematics of the patient for dynamic trials

(C) Lastly, the TLEM

C musculoskelatal model was nonlinearly morphed to match the stick-figure and inverse dynamic analysis performed using the estimated joint kinematics in (B) and the measured ground reaction forces.

(A) a stick-figure model was derived based on the markers from the standing reference trial and the HJCs from the CT scan

![](_page_46_Picture_0.jpeg)

![](_page_46_Figure_1.jpeg)

![](_page_47_Picture_0.jpeg)

# **CALCULATIONS: CPR**

![](_page_47_Figure_2.jpeg)

- Intersection of HCF with acetabular component was calculated
- Calculated the CPR distance (mm) of the Hip Contact Force from the edge

![](_page_48_Picture_0.jpeg)

#### **CPR & Metal Ions**

- Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and birmingham hip resurfacing arthroplasties. Langton *et al.* JBJS, British Volume, 2009. 91-B(10):1287-1295
- Contact patch to rim distance predicts metal ion levels in hip resurfacing. Yoon *et al.* Clin. Orthop. Relat. Res. 2013;471(5):1615-21
- Contact patch to rim distance can be used to predict component wear and blood metal ion levels in metal-on-metal hip resurfacing. Matthies *et al.* Bone & Joint Journal Orthopaedic Proceedings Supplement, 2013:95-B(SUPP 13):11

![](_page_49_Picture_0.jpeg)

# RESULTS Mean CPR per group (Gait)

![](_page_49_Figure_2.jpeg)

The subjects in the MalPosHigh group had hip contact forces that were closest to the edge of the acetabular component during the stance phase of gait

![](_page_50_Picture_0.jpeg)

# GAIT Lowest 10% CPR Distance

![](_page_50_Figure_2.jpeg)

![](_page_51_Picture_0.jpeg)

# GAIT Lowest 10% CPR Distance

![](_page_51_Figure_2.jpeg)

![](_page_52_Picture_0.jpeg)

#### Gait: Male v Female

![](_page_52_Figure_2.jpeg)

When the lowest 10% of CPR values for gait were grouped according to gender, there was no statistically significant difference (p=0.067)

![](_page_53_Picture_0.jpeg)

## GAIT: 'Large' v 'Small'

![](_page_53_Figure_2.jpeg)

When the lowest 10% of CPR values for gait were grouped according to component size, there was also no statistically significant difference (p=0.44)

![](_page_54_Picture_0.jpeg)

# RESULTS Mean CPR per group (STS)

![](_page_54_Figure_2.jpeg)

During the loading phase of STS, the mean values of CPR were:

20.5mm (SD 2.3mm, range 15.8–23.6mm) for WellPosLow,

19.4mm (SD 1.4mm, range 16.5–22.0mm) for MalPosLow

17.4 for MalPosHigh (SD 2.3mm, range 13.1–21.3mm)

![](_page_55_Picture_0.jpeg)

# STS Lowest 10% CPR (per patient)

![](_page_55_Figure_2.jpeg)

![](_page_56_Picture_0.jpeg)

# STS Lowest 10% CPR

![](_page_56_Figure_2.jpeg)

![](_page_57_Picture_0.jpeg)

#### STS: Male v Female

![](_page_57_Figure_2.jpeg)

When the lowest 10% of CPR values were grouped by gender, there was a statistically significant difference between males and females (p=0.002)

![](_page_58_Picture_0.jpeg)

## STS: 'Large' v 'Small'

![](_page_58_Figure_2.jpeg)

When the values were grouped by component size, there was also a statistically significant difference between large and small components (p<0.001)

![](_page_59_Picture_0.jpeg)

# **DISCUSSION I**

- In this study, subjects in the MalPosLow group had motion patterns that insulated their acetabular component from elevated wear rates caused by edge loading
  - This could also explain why some patients with well-positioned cups demonstrate high serum metal ion levels
- Results in this study agree with others who found a significant inverse correlation between CPR (static standing) and serum metal ion levels

![](_page_60_Picture_0.jpeg)

# **DISCUSSION II**

- Gender and component size had an affect on edgeloading risk for sit-to-stand but not gait
  - Gender and component size play a role in edge-loading risk of MoMHRA
  - Further work is required to fully identify their affect

![](_page_61_Picture_0.jpeg)

# **DISCUSSION III**

- First study assessing edge-loading risk in resurfaced hips dynamically
- Risk of edge loading is an issue for other hard bearing combinations such as ceramic-onceramic
  - 'stripe-wear' and 'squeaking'

![](_page_62_Picture_0.jpeg)

# **DISCUSSION II**

- Such differences were present in both activities tested (Gait and STS)
  - STS exhibited greater differences
  - ? More important action as hip enters a loadbearing state following a period of rest?

![](_page_63_Picture_0.jpeg)

# **DISCUSSION IV**

#### • LIMITATIONS:

- Small patient number
- No Well-Positioned High Ion group
- Mal-positioned with high ions group had only four subjects, three of whom were females
- MalPosHigh also had the smallest components

![](_page_64_Picture_0.jpeg)

## CONCLUSION

- In addition to component position, an individual's motion patterns play an important role in wear mechanisms
- Some patients with mal-orientated cups will avoid edge loading with the way they perform daily activities
- The motion patterns that exert this influence over component wear are a result of anatomy and subject-specific kinematics

![](_page_65_Picture_0.jpeg)

# **THANK YOU**

• With many thanks to:

- Barbara Marks
- Jo Copp
- McMinn Bursary, BHS
- DePuy
- NIHR BRU

![](_page_65_Picture_8.jpeg)

![](_page_66_Picture_0.jpeg)

#### **Paper Reference**

Mellon SJ, Grammatopoulos G, Andersen MS, Pegg EC, Pandit HG, Murray DW, Gill HS <u>Individual motion patterns during gait and sit-to-stand</u> <u>contribute to edge-loading risk in metal-on-metal hip resurfacing</u> Proc Inst Mech Eng H. 2013 Apr. doi: 10.1177/0954411913483639

![](_page_67_Picture_0.jpeg)

#### Questions?

![](_page_68_Picture_0.jpeg)

|           | File View Help                             |                 |        |
|-----------|--------------------------------------------|-----------------|--------|
| ORD       | - Audio                                    |                 |        |
| <u></u>   | Mic & Speakers Settings                    |                 |        |
|           | MUTED 400                                  | 00000000        |        |
|           | - Questions                                | 5               |        |
| Submit to | Presenter,<br>[Enter a question for staff] | Panelist,       | & Host |
|           |                                            | Send            |        |
|           | Webinar ID: 550                            | Now<br>-911-487 |        |
|           |                                            |                 |        |