

The influence of vertebral geometrical parameters on lumbar spine loading

<u>M. Putzer¹</u>, S. Auer¹, W. Malpica², I. Ehrlich¹, N. Gebekken³, S. Dendorfer¹

¹ Ostbayerische Technische Hochschule, Germany
² Ortho Kinematics, USA
³ University of the Bundeswehr Munich, Germany

OTH Regensburg

- ~10.000 students in 8 departments
- Mechanical Engineering
 - 1400 students
 - Programs in Mechanical Engineering, Industrial Engineering and Biomedical Engineering (started in 2011)

3

Introduction

- Back pain is very common in modern civilization
- Number of spine surgeries doubled from 2005 to 2011 (Klauber et al. 2012)
- Possible causes for back pain:
 - muscle tension
 - degenerative disc disease
 - compression fractures
 - facet joint degeneration
 - etc.

Introduction

- Back pain is very common in modern civilization
- Number of spine surgeries doubled from 2005 to 2011 (Klauber et al. 2012)
- Possible causes for back pain:
 - muscle tension
 - degenerative disc disease
 - compression fractures
 - facet joint degeneration
 - etc.

- Different causes of back pain which are sometimes not easy to diagnose
- Success of surgery depends on surgeon's training level (Wang et al., 2013)
- A revision rate of 10.3% for lumbar interbody fusion for spinal stenosis is reported (Nemani et al., 2014)
 - ➡
- Better understanding of lumbar spine loading is essential
- Only limited experimental data available

Subject-specific simulations

What is needed for subject-specific simulations?

- Which geometrical parameters are critical for a subjectspecific model?
- How do ligament properties influence the results?

Musculoskeletal Model

- Spine fixation with force dependent kinematics model (AMMR v1.4.1)
- Detailed modeling of the lumbar spine
- Postures are measured between pelvis and thorax
- FDK is used in the lumbar joints

Musculoskeletal Model

Modifications:

- Subject-specific vertebral geometry
- Attachment points for muscles and ligaments altered
- Axes of rotation aligned with data from fluoroscopic radiographs of a flexion motion (Ortho Kinematics, Inc.)

Musculoskeletal Model

Modifications:

- Subject-specific vertebral geometry
- Attachment points for muscles and ligaments altered
- Axes of rotation aligned with data from fluoroscopic radiographs of a flexion motion (Ortho Kinematics, Inc.)

Source: Ortho Kinematics, Inc.

Axes of rotation

10

Reminder for questions

- Q	uestions	2×
S	now Answered Questions	
х	Question	Asker
		*
		*
		Ŧ
		~
		~
Ser	Id Privately Send to All	

Validation

Wilke et al., 2001

Validation

13

Body movements

Study – Vertebral dimensions

Parameter	Abbreviation	Interval in mm				
Vertebral body width	VBW	+/- 5				
Vertebral body height	VBH	+/- 4				
Vertebral body depth	VBD	+/- 5				
Transverse process width	TPW	+/- 13				
Spinous process length	SPL	+/- 6				
Pedicle length	PDL	+/- 2				
Disc height	DiH	+/- 3				
Interfacet width	IFW	+/- 7.5				
Interfacet height	IFH	+/- 6.5				
		Interval in °				
Curvature of the lumbar spine (Lordosis angle)	LOR	+/- 5				
(Berry et al., 1987; Panjabi et al., 1992; Panjabi et al., 1993; Scoles et al., 1988)						

Results – Single Parameter (upright standing)

Results – Single Parameter (flexion)

Results – Combinations (upright standing)

Results – Combinations (upright standing)

Study – Ligament stiffness

Constitutive model for ligament force:

 $F1 = k \cdot eps1 \cdot L0$

- Variation of ligament stiffness (k) (Pintar et al., 1992)
- 3 different subjects (adjusted kinematics)
- Flexion movement

Influence on lumbar disc loading?

Relative changes in disc loading	Subject 1	Subject 2	Subject 3	
L3/L4	9%	14%	7%	
L4/L5	17%	23%	18%	

Increased ligament stiffness lead to:

- Increase of loading in ligaments and discs
- Lower disc gets more relative loading

Results – Ligament stiffness

Increasing ligament stiffness:

→ Motion shifts to the lower segments

- The results indicate that measurements of vertebral body height and depth as well as disc height and curvature of the spine could be sufficient to build a subject-specific model of the lumbar spine.
- Those dimension can be taken from radiographs.
- Lower radiation exposure.
- Fast access to a subject-specific model in pre-operative planning.

Conclusion II

- Increasing ligament stiffness
 - increases disc loading 23%
 - Shifts motion to lower lumbar parts
- Possible clinical implications:
 - Degeneration affects spine kinematics and kinetics in different parts of the spine