

Investigation of stair ascending and descending activities on the lifespan of hip implants

The webcast will begin shortly...

AnyBody

Outline

- Introduction to the AnyBody Modeling System
- Presentation
- Upcoming AnyBody events
- Question and answer session

Presenters

Associate Professor Dr Senay Mihcin Alican Tuncay Alpkaya, PhD student Mehmet Yilmaz, PhD student Ahmet Mert Sahin, PhD student

Izmir Institute of Technology,

Host

Izmir, Turkey

Kristoffer Iversen

Technical Sales Executive

AnyBody Technology

ANYBODY

Introduction to the AnyBody Modeling System

Control Panel

AnyBody

- Presentation
- Upcoming AnyBody events
- Question and answer session

Outline

Control Panel

AnyBody

Presentation

Events

Q&A

Musculoskeletal simulations

Motion analysis

Product design and optimization

Outline

Control Panel

Ergonomics with/without exoskeletons

AnyBody

Orthopedics and Rehabilitation

Presentation

Q&A

Sports

Automotive

Q&A

Control Panel

AnyBody

Events

Investigation of stair ascending and descending activities on the lifespan of hip implants

Q&A

Investigation of stair ascending and descending activities on the lifespan of hip implants

Authors and Presenters

S. Mihcin, A. M Sahin, M. Yılmaz, A. T. Alpkaya,

IZMIR INSTITUTE OF TECHNOLOGY (IZTECH)

IZMIR INSTITUTE OF TECHNOLOGY **WON FIRST PLACE**

in the General Satisfaction Ranking in the Türkiye University Satisfaction Survey (TÜMA) 2023, conducted by ÜniAr

Ranks **4th** in Turkey

St in the Aegean Region

Among State Universities in Research Universities Ranking

IZTECH Biomechanics and Motion Capture Laboratory

About Biomechanics and Motion Capture Laboratory

Biomechanics and Motion Capture Systems Laboratory was established in October 2020 within the scope of the TÜBİTAK BİDEB 2232 project within the Mechanical Engineering Department of the Izmir Institute of Technology. The primary purpose of the Biomechanics and Motion Capture Systems Laboratory is to create a comprehensive population data and to conduct research in line with these data.

In the 60 m2 laboratory, 1 motion capture system with optical markers (Qualisys, Göteborg, Sweden), 1 force platform (Bertec, Ohio, USA), 1 electromyography sensor set (EMG) (Delsys, Massachusetts, USA) and 1 wearable motion capture system (Rococo, Copenhagen, Denmark).

Name	Label	Number
Motion capture system with optical markers	Qualisys, Göteborg, Sweden	1
Miqus 3 Cameras	Qualisys, Göteborg, Sweden	9
Qualisys Track Manager	Qualisys, Göteborg, Sweden	1
14 mm reflective markes	Qualisys, Göteborg, Sweden	100
Force platform	Bertec, Ohio, USA	1
Electromyography sensor set (EMG)	Delsys, Massachusetts, USA	1
Wearable motion capture system	Rococo, Copenhagen, Denmark	1
Hip simulator	IZTECH Biomechanics and Motion Capture Laboratory, Izmir,Turkey	1
3D medical PEEK printer	Xi'an Jiaotong University, Shaanxi, China	1
Anybody Modeling System	AnyBody Technology, Aalborg, Denmark	2
WorkStation (Intel Xeon W-2245)	4	4

Website: https://biomechlab.iyte.edu.tr/en/homepage/

Contact mail: senaymihcin@iyte.edu.tr

IZTECH Biomechanics and Motion Capture Systems Laboratory

IZTECH Biomechanics and Motion Capture Laboratory

People	Assoc Prof Dr. Şenay Mihçin	MSc. Alican Tuncay ALPKAYA	Mehmet Yılmaz	Ahmet Mert Şahin
Role	Team Leader	Researcher Assistant	Researcher	Researcher
Degree	Ph.D.	MSc.	BSc	BSc
University	Loughborough University	Middle East Technical University	Erciyes University	Izmir Institute of Technology
Year	2008	2018	2021	2021

Journal Publications

- [1] S. Mihcin *et al.*, "Database covering the prayer movements which were not available previously," *Scientific Data*, vol. 10, no. 1, p. 276, 2023, doi: 10.1038/s41597-023-02196-x.
- [2] A. T. Alpkaya and Ş. Mihçin, "The Computational Approach to Predicting Wear: Comparison of Wear Performance of CFR-PEEK and XLPE Liners in Total Hip Replacement," *Tribology Transactions*, vol. 66, no. 1, pp. 59–72, 2023, doi: 10.1080/10402004.2022.2140727.
- [3] A. T. Alpkaya and S. Mihcin, "Dynamic computational wear model of PEEK-on-XLPE bearing couple in total hip replacements," *Medical Engineering & Physics*, p. 104006, 2023, doi: https://doi.org/10.1016/j.medengphy.2023.104006.
- [4] A. T. Alpkaya, M. Yılmaz, A. M Sahin, and S Mihcin, "Investigation of stair ascending and descending activities on the lifespan of hip implants," vol. 126, 2024, doi: 10.1016/j.medengphy.2024.104142.
- [5] S.Mihcin, Simultaneous validation of wearable motion capture system for lower body applications: over single plane range of motion (ROM) and gait activities, BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2022, 0013-5585, 67, 3, 185-199.
- [6] Torabnia, S., Mihcin, S. & Lazoglu, I. Design and manufacturing of a hip joint motion simulator with a novel modular design approach. Int J Interact Des Manuf (2023). <u>https://doi.org/10.1007/s12008-023-01506-2</u>

		Med	ical Engineering	and Physics	126 (2024) 104142	2		
			Contents lists	available at	ScienceDirect			Ξ.
		Medi	cal Engi	neering	g and Phy	sics		MERADING
ELSEVIER		journal ho	omepage: ww	w.elsevier.	com/locate/mede	engphy		
Paper	C	1.				.1 110	c	Check for

Investigation of stair ascending and descending activities on the lifespan of hip implants

Alican Tuncay Alpkaya, Mehmet Yılmaz, Ahmet Mert Şahin, Dr. Şenay Mihçin

Mechanical Engineering Department, Izmir Institute of Technology, Turkey

ARTICLE INFO

ABSTRACT

Keywords: Dynamic wear predict model Finite element model Stair ascending and descending Total hip replacement

Total hip arthroplasty (THA) surgeries among young patients are on the increase, so it is crucial to predict the lifespan of hip implants correctly and produce solutions to improve longevity. Current implants are designed and tested against walking conditions to predict the wear rates. However, it would be reasonable to include the additional effects of other daily life activities on wear rates to predict convergent results to clinical outputs. In this study, 14 participants are recruited to perform stair ascending (AS), descending (DS), and walking activities to obtain kinematic and kinetic data for each cycle using marker based Qualisys motion capture (MOCAP) system. AnyBody Modeling System using the Calibrated Anatomical System Technique (CAST) full body marker set are performed Multibody simulations. The 3D generic musculoskeletal model used in this study is a markerbased full-body motion capture model (AMMR,2.3.1 MoCapModel) consisting of the upper extremity and the Twente Lower Extremity Model (TLEM2). The dynamic wear prediction model detailing the intermittent and overall wear rates for CoCr-on-XLPE bearing couple is developed to investigate the wear mechanism under 3D loading for AS, DS, and walking activities over 5 million cycles (Mc) by using finite element modelling technique. The volumetric wear rates of XLPE liner under AS, DS, and walking activities over 5-Mc are predicted as 27.43, 23.22, and 18.84 mm³/Mc respectively. Additionally, the wear rate was predicted by combining stair activities and gait cycles based on the walk-to-stair ratio. By adding the effect of stair activities, the volumetric wear rate of XLPE is predicted as $22.02 \text{ mm}^3/Mc$ which is equivalent to 19.41% of walking. In conclusion, in this study, the effect of including other daily life activities is demonstrated and evidence is provided by matching them to the clinical data as opposed to simulator test results of implants under ISO 14242 boundary conditions.

Aims and Scope

Medical Engineering & Physics provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject.

← Journal information	n	
MEDICAL ENGINEERING	& PHYSICS	
Publisher name: ELSEVIER S	SCILTD	
Journal Impact Factor ™		
2.2	2.5	
2022	Five Year	
JCR Category	Category Rank	Category Quartile
ENGINEERING, BIOMEDICAL in SCIE edition	71/96	Q3
Source: Journal Citation Repo	rts 2022. Learn more 🔀	
Journal Citation Indicator ™ (
0.48	0.51	
2022	2021	
JCI Category	Category Rank	Category Quartile
ENGINEERING, BIOMEDICAL in SCIE edition	75/117	Q3

updates

HIGHLIGHTS

- This study makes use of experimental results in which 14 participants are recruited to perform walking, stair ascending (AS) and descending activities (DS) to extract kinematic and kinetic data for each cycle by using marker based Qualisys motion capture (MOCAP) system.
- Multibody simulations are performed in the Anybody Modeling System using the Calibrated Anatomical System Technique (CAST) full body marker set.
- The 3D generic musculoskeletal model used in this study is a marker-based full-body motion capture model (AMMR,2.3.1 MoCapModel) consisting of the upper extremity and the Twente Lower Extremity Model (TLEM2).
- For dynamic wear modelling, Ls-Dyna modelling software is utilized to predict the linear wear rates of CoCr-on-XLPE bearing couple under stair ascending and descending activities based on the walk-to-stair ratio (15.9:1) over 5 million cycles.
- The volumetric wear rates of XLPE liner under AS, DS, and walking activities over 5-Mc are predicted as 27.43, 23.22, and 18.84 respectively.
- The volumetric wear rate of XLPE is predicted as 22.02 which is equivalent to 19.41% of walking, which is concluded to be included in life span estimations of implants for realistic outcomes.

- Introduction
- Methodology
 - Participants
 - Construction of the Experiment
 - Data Acquisition
 - Musculoseletal Modelling
 - Finite Element Method
- Results
- Conclusion

IZTECH Biomechanics and Motion Capture Laboratory

Lab Facilities

Laboratory Environment

Construction of the Experiment

Bertec Force Plate

IZTECH Biomechanics and Motion Capture Systems Laboratory

May 14, 2024

Data Acquisition

Data Acquisition (Participation and Measurement)

Participation Conditions

- not having any physical illness, injuries, disability and deformity (Flatfoot, kyphosis, etc.)
- Being over age of 18
- the body mass index must be below 30 BMI.

Participants

14(7F/7M)	Participants Number
30±7	Age
64±12	Weight(kg)(Average ±SD)
170±11	Height(cm)(Average ±SD)

Anthropometric Measurements

Pelvis Medial Malleolus Pelvis Width Shank Length Thigh Length Foot Length Metatarsal Width Ankle Width Knee Width **Trunk Height** Shoulder Width Elbow Width Hand Width Wrist Width Wrist Thickness Upper Arm Length Lower Arm Length Arm length Hand Length Head Length

Laboratory

Data Acquisition (Marker Set)

Participant

Cast Full Body Marker Set

Data Acquisition Flow Chart

IZTECH Biomechanics and Motion Capture Systems Laboratory

Activities

Stair Ascending

Stair Descending

Gait

IZTECH Biomechanics and Motion Capture Systems Laboratory

Multibody Musculoskeletal Model Simulations

Full-Body MoCapModel Configurable Variables

Model

- Twente Lower Extremity Model (TLEM2)
- Scaling
 - Scale taking mass and fat into account; scale segments along X, - - - Y, Z axes; input is scale factors along X, Y, Z axes.
- Marker Protocol
 - CAST Full Body Marker Set (Static&Dynamic)
- Force Plate Type
 - BERTEC force platform Type 4
- Muscle Recruitment Optimization algorithms
 - Third order, polynomial muscle recruitment criterion
- Anthropometrics
 - Set anthropometrics for each subject (mass, height, etc.)
- Inital Position of Segments
 - This sets load time limbs positions (Static&Dynamic)

Static and Dynamic Simulations

Validation

Laboratory

Results

Activity	ABD(°)Min/Max	FE(°)Min/Max	IE(°)Min/Max	AP(%BW)Min/Max	ML(%BW)Min/Max	PD(%BW)Min/Max
Gait	-6/3	-3/33	-14/2	-2/25	-48/-6	10/221
Stair Ascending	-5/4	-6/63	-13/-1	-8/24	-75/-6	10/272
Stair Descending	-6/2	-11/38	-16/-1	-5/18	-51/-8	17/268

IZTECH Biomechanics and Motion Capture Systems

Laboratory

Finite Element

Modelling for

Wear Analysis

The hypothesis

Literature Data

- ✓ The lifespan of hip implant under walking cycles in FEM could be predicted as 25.7 years ¹¹
- ✓ J.T. Evans et al studied at the lifespan of 228888 hip implants in 16 different countries ⁶³. The average lifespan of hip implants last 20 years ⁶³

The hypothesis

The daily frequency of stair ascending/descending per day is calculated as

- ✓ 172 cycles which is equivalent to 62780 cycles for stair ascending/descending
- \checkmark 3040 steps per day which is equivalent to 1 Mc per year
- Predicted the walk-to-stair ratio of 15.9:1

Wear Prediction Model

 We investigate the wear performance and longevity of hip implants adding stair ascending and stair descending wear rates on walking cycles according to the walk-to-stair ratio provided to converge our results with literature data

Model Quality

Material and Methods

- ✓ An explicit FE analysis tool (Ls-
 - Dyna R.12.0) over 5 million cycles.
- ✓ The liner inserted at 45° on the FE
- ✓ The shell is fixed, while the femoral

head is free.

axis.

 $\checkmark\,$ The loading is applied, while the

rotations are defined.

Figure 1 The loading and rotation data for (a) gait, (b) SA, (c) SD, d) applied loading and boundary conditions in FEM, (e) loading and rotation in anatomical axes, and (f) initial and final position in FEM, and (g) initial and middle position of each activity.

Mesh Sensivity Analysis

Figure 2 a) Mesh sensitivity analysis of CoCr-on-XLPE bearing couple and b) Peak contact pressure

- ✓ Mesh convergence test is a vital process.
- ✓ Variations in the outputs are less than 1%, the optimum mesh size is determined.
- ✓ Seven CoCr-on-XLPE prototypes were modelled.
- ✓ The optimum mesh will be selected as 1mm

 Table 2 Effect of element size on contact pressure, sliding distance and wear depth

El. Size (mm)	Run (min)	C. P. (MPa)	C.P (%)	W. D. (10 ⁻⁸ mm)	W.D. (%)	S.D. (mm)	S.D. (%)	Liner Element
2.00	144	9.05	1.90	4.43	6.54	25.20	1.95	7200
1.80	164	9.22	2.05	4.74	3.46	25.70	3.09	8160
1.60	293	9.41	1.31	4.91	0.81	26.52	1.34	9120
1.40	324	9.54	4.27	4.95	0.80	26.88	0.07	10560
1.20	424	9.96	0.04	4.99	3.48	26.90	0.74	12480
1.00	627	9.97	0.03	5.17	0.19	27.10	0.57	14880
0.80	973	9.97	-	5.18	-	27.25	-	18720

IZTECH Biomechanics and Motion Capture Systems Laboratory

Scaling Factor Sensivitiy Analysis

- ✓ Ranged from 0.1 to 1 million cycles
- ✓ The run time of the model with 0.25
 million cycles is approximately 2.5 times

higher than the model with 0.1 million

cycles.

✓ The optimum scaling factor is selected

as 0.25 million cycles (Figure 3a).

Figure 3(a) The effect of scaling factor on wear depth and contacting area, and (b)

wear depth at the end of the 1 million cycles

Results and Conclusion

Contact Pressure

The peak contact

pressure values have

obtained

- 6.33 MPa for gait at 0.21 s.
- 7.58 MPa for SD at 0.78 s.
- 8.33 MPa for SA at 0.23 s.

Figure 4 The contact pressure distribution over percentage of (a) gait, (b) SD, and (c) SA activities cycles at the end of the 250.000 cycles

36

Linear Wear Depth

Figure 5 shows the cumulative linear wear depth

- $\checkmark\,$ 0.14399 mm for gait (Figure 4a),
- ✓ 0.19599 mm for stair ascending (Figure 4b)
- ✓ 0.17936 mm for stair descending (Figure 4c)

Linear Wear Depth And Volumetric Wear Loss

The percentage increases in mean

volumetric wear rates of XLPE liner and

CoCr head for gait (by adding SA and

SD) activity compared to normal

walking are predicted at

- 6.88% for XLPE liner
- 12.02% for CoCr head

linear under gait, stair ascending and stair descending boundary conditions over

five million cycles.

	Mean volumetric wear rate (mm^3/Mc)					
Davit	SA	SA SD		Gait (adding SA and		
				SD)		
XLPE liner	27.429	23.220	18.839	22.020		
CoCr head	0.337	0.307	0.336	0.376		

IZTECH Biomechanics and Motion Capture Systems

- ✓ The volumetric wear rates of XLPE under walking increased by 16.9 % by including the effects of stair ascending/ descending activities.
- ✓ The linear wear rates of XLPE for walking increased up to 3.27% by adding stair ascending/descending activities.
- ✓ The lifespan of hip implant under walking cycles could be predicted as 25.7 years¹¹ in FEM and 20 years in clinical retrivial⁶³.
- In the current study, it could be predicted as 26.9 years for walking compared to 23 years with walking adding stair ascending and descending activities.
- ✓ While estimating the lifetime of the implants, the researchers should consider the cumulative effect of each daily life activity rather than focusing on only gait cycles for more accurate prediction of lifespan of hip implant.

References

- T. Karachalios, G. Komnos, and A. Koutalos, "Total hip arthroplasty: Survival and modes of failure," *EFORT Open Rev.*, vol. 3, no. 5, pp. 232–239, 2018, doi: 10.1302/2058-5241.3.170068.
- J. G. Haw, A. K. Battenberg, D. C. T. Huang, and T. P. Schmalzried, "Wear Rates of Larger-Diameter Cross-Linked Polyethylene at 5 to 13 Years: Does Liner Thickness or Component Position Matter?," J. Arthroplasty, vol. 32, no. 4, pp. 1381–1386, 2017, doi: 10.1016/j.arth.2016.11.022.
- M. Morlock *et al.*, "Duration and frequency of every day activities in total hip patients," J. Biomech., vol. 34, no. 7, pp. 873–881, 2001, doi: 10.1016/S0021-9290(01)00035-5.
- A. T. Alpkaya and S. Mihcin, "Dynamic computational wear model of PEEK-on-XLPE bearing couple in total hip replacements," *Med. Eng. Phys.*, p. 104006, 2023, doi: <u>https://doi.org/10.1016/j.medengphy.2023.104006</u>.
- E. De Pieri, M. E. Lund, A. Gopalakrishnan, K. P. Rasmussen, D. E. Lunn, and S. J. Ferguson, "Refining muscle geometry and wrapping in the TLEM 2 model for improved hip contact force prediction," *PLoS One*, vol. 13, no. 9, pp. 1–19, 2018, doi: 10.1371/journal.pone.0204109.
- G. Bergmann et al., "Hip forces and gait patterns from rountine activities," J. Biomech., vol. 34, pp. 859–871, 2001.
- S. Mihcin *et al.*, "Database covering the prayer movements which were not available previously," *Sci. Data*, vol. 10, no. 1, p. 276, 2023, doi: 10.1038/s41597-023-02196-x
- V. S. J. S, Color Atlas of Skeletal Landmark Definitions: Guidelines for Reproducible Manual and Virtual Palpations, vol. 4, no. 4. Churchill Livingstone/Elsevier, 2007. [Online]. Available: <u>https://books.google.com.tr/books?id=fK_ZAQAACAAJ</u>
- M. S. Andersen, M. Damsgaard, B. MacWilliams, and J. Rasmussen, "A computationally efficient optimisation-based method for parameter identification of kinematically determinate and over-determinate biomechanical systems," *Comput. Methods Biomech. Biomed. Engin.*, vol. 13, no. 2, pp. 171–183, 2010, doi: 10.1080/10255840903067080.

Resources

- www.anybodytech.com
 - Events, Webcast library, Publication list, ...
- www.anyscript.org
 - Wiki, Blog, Repositories, Forum
- **Events** •
 - June 4: Webcast: New AnyBody Thoracic Spine, Ribcage and Abdominal Model
 - Registration is open on our website
 - June 30 July 4: ESB 2024 29th Congress • of the European Society of Biomechanics
 - July 17 20: SOA annual meeting 2024 • Southern Ortopaedic Association

Control Panel

AnyBody

Presentation

Events

Webcast library

Q&A

1000+

publications

filter by:

Industry

Research area

Body part

100+

webcasts

filter by:

ľ		
Resources	/ Publication list	
Indus	try	
sports	xoskeleton work place ergonomics orthopedics defense aerospace automotive consumer products furniture	
Resea	arch area	
gait me	hods validation animal sensitivity analysis rehab seating fea AnyBody Tech selected	
3ody	part	
knee lo	ver extremity foot spine upper extremity hand shoulder hip mandible wrist trunk elbow ankle leg	
NEW		
/ear	1057 Publications	
024	He Z, Liu G, Zhang B, Ye B, Zhu H, (2024). "Impact of specialized fatigue and backhand smash on the ankle biomechanics of female badminton players". Sci. Rep., vol. 14, pp. 10282. [DOI, WWW]	NEW sports ankle lower extremity
024	Rieger F, Rothenfluh DA, Ferguson SJ, Ignasiak D, (2024), "Comprehensive assessment of global spinal sagittal alignment and related normal spinal loads in a healthy population". J. Biomech., pp. 112127. [DOI, WWW]	NEW orthopedics spine
024	Akiho 5, Hashida R, Tagawa Y, Maeyama A, Kinoshita K, Kanazawa K, Matsuse H, Hara M, Yamamoto T, (2024), "Bone morphology and physical characteristics of the pro-cyclist hip joint". Int. Orthop., [DOI, WWW]	NEW sports hip
024	Menze J, Rojas JT, Ferguson SJ, De Pieri E, Gerber K, Zumstein MA, (2024), "Lower Trapezius and Latissimus Dorsi Transfer relieve Teres Minor Activity into the Physiological Range in Collin D irreparable Posterosuperior Massive Rotator Cuff Tears: A Biomechanical Analysis". J. Shoulder Elbow Surg., [DOI, WWW]	NEW orthopedics shoulder
024	Takeshita Y, Kawada M, Miyazaki T, Araki S, Matsuzawa Y, Higashi N, Hayashi H, Yamaguchi Y, Nakatsuji S, Nakai Y, Kiyama R, (2024), "Estimation of joint and muscle forces during exercise in various postures", J. Bodyw. Mov. Ther., [DDI, WWW]	NEW sports hip leg lower extremity spine rehab
024	Tzanetis P, de Souza K, Robertson S, Fluit R, Koopman B, Verdonschot N, (2024). "Numerical study of osteophyte effects on preoperative knee functionality in patients undergoing total knee arthroplasty". J. Orthop. Res., [DOI, WWW]	NEW orthopedics knee leg lower extremity
024	Antognini C, Knowlton C, Wimmer MA, (2024), "APPLICABILITY OF MARKERLESS CAPTURED JOINT KINEMATICS AND KINETICS TO MUSCULOSKELETAL MODELLING OF THE KNEE". Osteoarthritis Cartilage, vol. 32, pp. 5175-5176. [DOI, WWW]	NEW knee leg lower extremity
024	Song M, Li Z, Jiang J, Chen W, Guo S, Zheng H, Niu L, (2024), "Design, Simulation and Kinematic Validation of a Hip Prosthetic Mechanism with a Multimotor Function", J. Bionic Eng., [DOI]	NEW exoskeleton hip leg lower extremity
024	Holl M, Tröster M, Rack R, Daub U, Schneider U, Bauernhansl T, Müller G, (2024), "Digitale Arbeitsmodelle und Methoden/Digital work models and methods – Transparency for the use of occupational exoskeletons as an ergonomic measure", wt Werkstattstechnik online, vol. 114, pp. 59-65. [DOI, WWW]	NEW exoskeleton work place ergonomics methods
024	Wong C, Shayestehpour H, Koutras C, Dahl B, Otaduy MA, Rasmussen J, Bencke J, (2024), "Using Electric Stimulation of the Spinal Muscles and Electromyography during Motor Tasks for Evaluation of the Role in Development and Percension on diddecerent Hiomathic Scalauses". J Clin Model J DDI WWW)	NEW spine

Publications list

Webcasts list

syndrome during squat tasks

Pau Zamora Ortiz Investigador en Ingeniería

Questions

Meet us

Send email to <u>sales@anybodytech.com</u>

Send email to <u>sales@anybodytech.com</u>

Presentation questions

Send email to ki@anybodytech.com

